Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-16T23:20:18.592Z Has data issue: false hasContentIssue false

Flowering as a key factor in ant–Philodendron interactions

Published online by Cambridge University Press:  01 November 2008

Marc Gibernau*
Affiliation:
Laboratoire d'Evolution et Diversité Biologique, UMR-CNRS 5174, Université Paul Sabatier, Bât. 4R3-B2, 31062 Toulouse Cedex 9, France
Jérome Orivel
Affiliation:
Laboratoire d'Evolution et Diversité Biologique, UMR-CNRS 5174, Université Paul Sabatier, Bât. 4R3-B2, 31062 Toulouse Cedex 9, France
Alain Dejean
Affiliation:
Écologie des Forêts de Guyane, UMR-CNRS 8172, Campus agronomique, BP 709, 97379 Kourou cedex, France
Jacques Delabie
Affiliation:
U.P.A. Laboratório de Mirmecologia, Convênio UESC/CEPLAC, C.P. 7, 45600-000 Itabuna, Bahia, Brazil
Denis Barabé
Affiliation:
Institut de Recherche en Biologie Végétale, Jardin botanique de Montréal, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal H1X 2B2 (Québec), Canada
*
1Corresponding author. Email: [email protected]

Extract

With the spread of angiosperms some lineages of ants, originally ground-dwellers and predators, adapted to arboreal life. Ground-nesting worker ants probably constituted the first case of biotic plant protection through their predatory activity while foraging on plant foliage. Then, ants developed tight evolutionary bonds with plants varying from facultative diffuse relationships to obligatory specific associations, necessary to the survival of both partners. In diffuse relationships plants induce different ant species to patrol their foliage by producing energy-rich food rewards such as extra-floral nectar (EFN) and/or food bodies (FBs) (Dejean et al. 2007, Heil 2008, Heil & McKey 2003). First described by Janzen (1966), myrmecophytes, or plants that provide specialized plant-ants a nesting place in hollow structures called domatia, represent a good example of a strict association as, in return, they are protected from several kinds of enemies, particularly defoliating insects (Heil & McKey 2003, Hölldobler & Wilson 1990).

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BASTIEN, D. & BELIN-DEPOUX, M. 1998. L'association Philodendron – fourmis – aleurodes en Guyane française. Pp. 4145 in Bournoville, R. (ed.). Interactions insectes- plantes. INRA-Versailles, Lusignan. 65 pp.Google Scholar
BEATTIE, A. J. & HUGHES, L. 2002. Ant–plant interactions. Pp. 211235 in Herrera, C. & Pellmyr, O. (eds.). Plant-animal interactions: an evolutionary approach. Blackwell, Oxford.Google Scholar
BLÜTHGEN, N., VERHAAGH, M., GOITÍA, W., JAFFÉ, K., MORAWETZ, W. & BARTHLOTT, W. 2000. How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia 125:229240.CrossRefGoogle ScholarPubMed
DEJEAN, A., CORBARA, B., ORIVEL, J. & LEPONCE, M. 2007. Rainforest canopy ants: the implications of territoriality and predatory behavior. Functional Ecosystems and Communities 1:105120.Google Scholar
GIBERNAU, M., BARABÉ, D., CERDAN, P. & DEJEAN, A. 1999. Beetle pollination of Philodendron solimoesense (Araceae) in French Guiana. International Journal of Plant Sciences 160:11351143.CrossRefGoogle ScholarPubMed
GIBERNAU, M., ORIVEL, J., DELABIE, J., BARABÉ, D. & DEJEAN, A. 2007. Asymmetrical relationship between an arboreal ponerine ant and a trash-basket epiphyte (Araceae). Biological Journal of the Linnean Society 91:341346.CrossRefGoogle Scholar
HEIL, M. 2008. Indirect defence via tritrophic interactions. New Phytologist 178:4161.CrossRefGoogle ScholarPubMed
HEIL, M. & MCKEY, D. 2003. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annual Review of Ecology, Evolution, and Systematics 34:425453.CrossRefGoogle Scholar
HÖLLDOBLER, B. & Wilson, E. O. 1990. The ants. Harvard University Press, Cambridge. 746 pp.CrossRefGoogle Scholar
JANZEN, D. H. 1966. Coevolution of mutualism between ants and acacias in Central America. Evolution 20:249275.CrossRefGoogle ScholarPubMed
KING, J. R., ANDERSEN, A. N. & CUTTER, A. D. 1998. Ants as bioindicators of habitat disturbance: validation of the group model for Australia's humid tropics. Biodiversity and Conservation 7:16271638.CrossRefGoogle Scholar
MAJER, J. D., DELABIE, J. H. & MCKENZIE, N. L. 1997. Ant litter fauna of forest edges and adjacent grassland in the Atlantic rainforest region of Bahia, Brazil. Insectes Sociaux 44:255266.CrossRefGoogle Scholar
ORIVEL, J. & DEJEAN, A. 1998. Active role of two ponerine ants in the elaboration of ant gardens. Biotropica 30:487491.CrossRefGoogle Scholar
VASCONCELOS, H. L. 1999. Effects of forest disturbance on the structure of ground-foraging ant communities in Central Amazonia. Biodiversity and Conservation 8:409420.CrossRefGoogle Scholar
WAY, M. J. & BOLTON, B. 1997. Competition between ants for coconut palm nesting sites. Journal of Natural History 31:439455.CrossRefGoogle Scholar
Supplementary material: File

Gibernau supplementary material

Appendix.doc

Download Gibernau supplementary material(File)
File 92.2 KB