Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T00:06:06.327Z Has data issue: false hasContentIssue false

Flower number and distance to neighbours affect the fecundity of Goetzea elegans (Solanaceae)

Published online by Cambridge University Press:  02 August 2011

Marcos A. Caraballo-Ortiz*
Affiliation:
Department of Biology, University of Puerto Rico, Río Piedras Campus, P.O. Box 70377, San Juan, Puerto Rico 00936–8377, USA Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Río Piedras Campus, P.O. Box 23341, San Juan, Puerto Rico 00931–3341, USA
Eugenio Santiago-Valentín
Affiliation:
Department of Biology, University of Puerto Rico, Río Piedras Campus, P.O. Box 70377, San Juan, Puerto Rico 00936–8377, USA Herbarium, Botanical Garden of the University of Puerto Rico, 1187 Calle Flamboyán, San Juan, Puerto Rico 00926, USA Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Río Piedras Campus, P.O. Box 23341, San Juan, Puerto Rico 00931–3341, USA
Tomás A. Carlo
Affiliation:
Pennsylvania State University, Department of Biology, 208 Mueller Laboratory, University Park, Pennsylvania 16802, USA
*
1Corresponding author. Current address: Pennsylvania State University, Department of Biology, 208 Mueller Laboratory, University Park, PA 16802, USA. Email: [email protected]

Abstract:

Pollinator visits to flowers of self-incompatible tropical trees are critical for plant fecundity. However, few studies have examined how much of the variance in tropical tree fecundity is explained by individual attributes of trees (e.g. number of flowers), and how much is due to contextual variables such as distances to nearest flowering neighbours. Using multiple regressions we examined the relative contributions of these factors to the pollination and fecundity of Goetzea elegans, a mainly self-incompatible tree endemic to Puerto Rico. We studied the largest wild population of the species during the peak flowering and collected data on the frequency of pollinator visits (N = 25 trees), and the fecundity of the whole population (N = 105), including the visitation rate of two pollinators (the honey bee Apis mellifera and the bananaquit Coereba flaveola), the total number of flowers produced by each tree, and the total fruit set and seed viability per tree. We also recorded the distance to flowering conspecifics and heterospecifics, and the height for each tree. Flower number had a strong positive effect on pollinator visitation, but distance to nearest neighbours was equally or more important than flower number in influencing fecundity. Also, competition for limited pollinators between G. elegans and other species has a stronger effect than the facilitation that conspecifics may provide. Our results suggest that pollinator visits and aspects of fecundity of G. elegans depend both on the attributes of individual plants, and on those of the community of other nearby plants.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BAWA, K. S., PERRY, D. R. & BEACH, J. H. 1985. Reproductive biology of tropical lowland rain forest trees. I. Sexual systems and incompatibility mechanisms. American Journal of Botany 72:331345.Google Scholar
BURD, M. 1994. Bateman's principle and plant reproduction: the role of pollen limitation in fruit and seed set. Botanical Review 60:83111.Google Scholar
CARABALLO-ORTIZ, M. A. 2007. Mating system and fecundity of Goetzea elegans (Solanaceae), an endangered tree of Puerto Rico. M.S. thesis, University of Puerto Rico, Rio Piedras, San Juan de Puerto Rico, Puerto Rico.Google Scholar
CARABALLO-ORTIZ, M. A. & SANTIAGO-VALENTÍN, E. 2011. The breeding system and effectiveness of introduced and native pollinators of the endangered tropical tree Goetzea elegans (Solanaceae). Journal of Pollination Ecology 4:2633.Google Scholar
CASCANTE, A., QUESADA, M., LOBO, J. J. & FUCHS, E. A. 2002. Effects of dry tropical forest fragmentation on the reproductive success and genetic structure of the tree Samanea saman. Conservation Biology 16:137147.Google Scholar
DE JONG, T. J., WASER, N. M., PRICE, M. V. & RING, R. M. 1992. Plant size, geitonogamy and seed set in Ipomopsis aggregata. Oecologia 89:310315.CrossRefGoogle ScholarPubMed
DEMATTIA, E. A., CURRAN, L. M. & RATHCKE, B. J. 2004. Effects of small rodents and large mammals on Neotropical seeds. Ecology 85:21612170.Google Scholar
DUNCAN, D. H., NICOTRA, A. B., WOOD, J. T. & CUNNINGHAM, S. A. 2004. Plant isolation reduces outcross pollen receipt in a partially self-compatible herb. Journal of Ecology 92:977985.Google Scholar
EWEL, J. J. & WHITMORE, J. L. 1973. The ecological life zones of Puerto Rico and U.S. Virgin Islands. U.S. Department of Agriculture, Forest Service Research Report ITF–18, Río Piedras, Puerto Rico, USA. 72 pp.Google Scholar
FEINSINGER, P., TIEBOUT, H. M. & YOUNG, B. E. 1991. Do tropical bird-pollinated plants exhibit density-dependent interactions? Field experiments. Ecology 72:19531963.Google Scholar
FUKUE, Y., KADO, T., LEE, S. L., NG, K. K. S., MUHAMMAD, N. & TSUMURA, Y. 2007. Effects of flowering tree density on the mating system and gene flow in Shorea leprosula (Dipterocarpaceae) in Peninsular Malaysia. Journal of Plant Research 120:413420.Google Scholar
GARCÍA-CAMACHO, R., MÉNDEZ, M. & ESCUDERO, A. 2009. Pollination context effects in the high-mountain dimorphic Armeria caepitosa (Plumbaginaceae): neighborhood is something more than density. American Journal of Botany 96:16201626.Google Scholar
GHAZOUL, J. 2005. Pollen and seed dispersal among dispersed plants. Biological Reviews 80:413443.Google Scholar
GROOM, M. J. 1998. Allee effects limit population viability of an annual plant. American Naturalist 151:487496.Google Scholar
HADDAD, N. M. & TEWKSBURY, J. J. 2005. Low-quality habitat corridors as movement conduits for two butterfly species. Ecological Applications 15:250257.Google Scholar
JOHNSON, S. D., PETER, C. I., NILSSON, L. E. & ÅGREN, J. 2003. Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants. Ecology 84:29192927.CrossRefGoogle Scholar
JONES, F. A. & COMITA, L. S. 2008. Neighbourhood density and genetic relatedness interact to determine fruit set and abortion rates in a continuous tropical tree population. Proceedings of the Royal Society of London, Series B, Biological Sciences 275:27592767.Google Scholar
KLINKHAMER, P. G. L., DE JONG, T. J. & DE BRUYN, G.-J. 1989. Plant size and pollinator visitation in Cynoglossum officinale. Oikos 54:201204.Google Scholar
KNAPP, S. 2010. On ‘various contrivances’: pollination, phylogeny and flower form in the Solanaceae. Philosophical Transactions of the Royal Society B 365:449460.Google Scholar
KODRIC-BROWN, A., BROWN, J. H., BYERS, G. S. & GORI, D. F. 1984. Organization of a tropical island community of hummingbirds and flowers. Ecology 65:13581368.Google Scholar
LÁZARO, A., LUNDGREN, R. & TOTLAND, Ø. 2009. Co-flowering neighbors influence the diversity and identity of pollinator groups visiting plant species. Oikos 118:691702.Google Scholar
LITTLE, E. L., WOODBURY, R. O. & WADSWORTH, F. H. 1974. Trees of Puerto Rico and the Virgin Islands. USDA Agriculture Handbook No. 449, US Forest Service, Washington, DC. 1024 pp.Google Scholar
MIMURA, M., BARBOUR, R. C., POTTS, B. M., VAILLANCOURT, R. E. & WATANABE, K. N. 2009. Comparison of contemporary mating patterns in continuous and fragmented Eucalyptus globulus native forests. Molecular Ecology 18:41804192.Google Scholar
MITCHELL, R. J. & WASER, N. M. 1992. Adaptive significance of Ipomopsis aggregata nectar production: pollination success of single flowers. Ecology 73:633638.Google Scholar
MYERS, N., MITTERMEIER, R. A., MITTERMEIER, C. G., DA FONSECA, G. A. B. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853858.Google Scholar
NAITO, Y., KANZAKI, M., IWATA, H., OBAYASHI, K., LEE, S. L., MUHAMMAD, N., OKUDA, T. & TSUMURA, Y. 2008. Density-dependent selfing and its effect on seed performance in a tropical canopy tree species, Shorea acuminata (Dipterocarpaceae). Forest Ecology and Management 256:375383.Google Scholar
NASON, J. D., ALDRICH, P. R. & HAMRICK, J. L. 1997. Dispersal and the dynamics of genetic structure in fragmented tropical tree populations. Pp. 304320 in Lawrence, W. F. & BIerregaard, R. O. (eds.). Tropical forest remnants: ecology, management, and conservation of fragmented communities. The University of Chicago Press, Chicago.Google Scholar
NAYAK, K. G. & DAVIDAR, P. 2010. Pollinator limitation and the effect of breeding systems on plant reproduction in forest fragments. Acta Oecologica 36:191196.Google Scholar
OLESEN, J. M., ESKILDSEN, L. I. & VENKATASAMY, S. 2002. Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. Diversity and Distributions 8:181192.Google Scholar
PEGUERO, B., JIMÉNEZ, F., VELOZ, A., CLASE, T. & GARCÍA, R. 2003. Provisional National Red List of the Endangered Plants in the Dominican Republic. Santo Domingo National Botanical Garden, Dominican Republic. 14 pp.Google Scholar
PYKE, G. H. 1984. Optimal foraging theory: a critical review. Annual Review of Ecology and Systematics 15:523575.Google Scholar
RAFFAELE, H., WILEY, J., GARRIDO, O., KEITH, A. & RAFFAELE, J. 1998. A guide to the birds of the West Indies. Princeton University Press, Princeton. 512 pp.Google Scholar
RAGHU, S., WILTSHIRE, C. & DHILEEPAN, K. 2005. Intensity of pre-dispersal seed predation in the invasive legume Leucaena leucocephala is limited by the duration of pod retention. Austral Ecology 30:310318.Google Scholar
RODRÍGUEZ-ROBLES, J. A., MELÉNDEZ, E. J. & ACKERMAN, J. D. 1992. Effects of display size, flowering phenology, and nectar availability on effective visitation frequency in Comparettia falcata (Orchidaceae). American Journal of Botany 79:10091017.Google Scholar
SANTIAGO-VALENTÍN, E. 1995. Reproductive and population ecology of Goetzea elegans Wydler (Solanaceae or Goetzeaceae). M.S. thesis, University of Puerto Rico, Mayagüez, Puerto Rico.Google Scholar
SANTIAGO-VALENTíN, E. & OLMSTEAD, R. G. 2003. Phylogenetics of the Antillean Goetzoideae (Solanaceae) and their relationships within the Solanaceae based on Chloroplast and ITS DNA sequence data. Systematic Botany 28:452460.Google Scholar
SARACCO, J. F., COLLAZO, J. A., GROOM, M. J. & CARLO, T. A. 2005. Crop size and fruit neighborhood effects on bird visitation to fruiting Schefflera morototoni trees in Puerto Rico. Biotropica 37:8086.Google Scholar
SCHULKE, B. & WASER, N. M. 2001. Long-distance pollinator flights and pollen dispersal between populations of Delphinium nuttallianum. Oecologia 127:239245.Google Scholar
SIH, A. & BALTUS, M. S. 1987. Patch size, pollinator behavior, and pollinator limitation in catnip. Ecology 68:16791690.Google Scholar
STACY, E. A., HAMRICK, J. L., NASON, J. D., HUBBELL, S. P., FOSTER, R. B. & CONDIT, R. 1996. Pollen dispersal in low-density populations of three Neotropical tree species. American Naturalist 148:275298.Google Scholar
SUNNICHAN, V. G., MOHAN RAM, H. Y. & SHIVANNA, K. R. 2004. Floral sexuality and breeding system in gum karaya tree, Sterculia urens. Plant Systematics and Evolution 244:201218.CrossRefGoogle Scholar
TAKAKURA, K.-I., NISHIDA, T., MATSUMOTO, T. & NISHIDA, S. 2009. Alien dandelion reduces the seed-set of a native congener through frequency-dependent and one-sided effects. Biological Invasions 11:973981.Google Scholar
USFWS (U. S. FISH & WILDLIFE SERVICE). 1987. Beautiful Goetzea recovery plan. U.S. Fish and Wildlife Service, Atlanta. 35 pp.Google Scholar
VAMOSI, J. C., KNIGHT, T. M., STEETS, J. A., MAZER, S. J., BURD, M. & ASHMAN, T.-L. 2006. Pollination decays in biodiversity hotspots. Proceedings of the National Academy of Sciences USA 103:956961.Google Scholar
WAGENIUS, S. & LYON, S. P. 2010. Reproduction of Echinacea angustifolia in fragmented prairie is pollen-limited but not pollinator-limited. Ecology 91:733742.Google Scholar
WARD, M., DICK, C. W., GRIBEL, R. & LOWE, A. J. 2005. To self, or not to self . . . A review of outcrossing and pollen-mediated gene flow in Neotropical trees. Heredity 95:246254.Google Scholar
WASER, N. M. 1978. Interspecific pollen transfer and competition between co-occurring plant species. Oecologia 36:223236.Google Scholar
WILLSON, M. F. & PRICE, P. W. 1977. The evolution of inflorescence size in Asclepias (Asclepiadaceae). Evolution 31:495511.Google Scholar
WUNDERLE, J. M. & O'BRIEN, T. G. 1985. Risk aversion in hand-reared bananaquits. Behavioral Ecology and Sociobiology 17:371380.Google Scholar