Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T14:47:53.729Z Has data issue: false hasContentIssue false

First record of flower visitation by a rodent in Neotropical Proteaceae, Oreocallis grandiflora

Published online by Cambridge University Press:  23 March 2017

Santiago Cárdenas*
Affiliation:
Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Av. 24 de Mayo 7–77 y Hernán Malo, Cuenca, Ecuador
Carlos Nivelo-Villavicencio
Affiliation:
Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Av. 24 de Mayo 7–77 y Hernán Malo, Cuenca, Ecuador
Juan D. Cárdenas
Affiliation:
Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Av. 24 de Mayo 7–77 y Hernán Malo, Cuenca, Ecuador
Omar Landázuri P.
Affiliation:
Laboratório de Ecologia e Conservação de Vertebrados, Universidade Federal do Amapá, Rod. Juscelino Kubitschek Km 02, Macapá 68903-419, Brazil
Boris A. Tinoco
Affiliation:
Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Av. 24 de Mayo 7–77 y Hernán Malo, Cuenca, Ecuador
*
*Corresponding author: Santiago Cárdenas; [email protected]

Abstract:

There is still much to learn about pollination ecology in areas of high species diversity, such as the Neotropical region. For example, the role of non-flying mammals in pollination is largely unknown in the Neotropical areas, despite the importance of this group in the pollination of plants in other regions. Here we report evidence for flower visitation by a rodent to Oreocallis grandiflora (Proteaceae) in our study site in the southern Andes of Ecuador. For a period of 241 h, camcorders equipped with infrared lights revealed 22 occurrences of floral visitation by Microryzomys altissimus (Cricetidae) to inflorescences of O. grandiflora. Pollen samples taken from the fur of captured individuals showed that M. altissimus carries pollen of O. grandiflora, indicating a potential pollinator role for the rodent. This is the first record of flower visitation by a rodent in the Neotropical Andes. Pollination interactions between non-flying mammals and Proteaceae have been reported in other southern hemisphere continents. This study underscores the need for more research on pollination interactions in the Neotropics, especially in critical Andean biodiversity hotspots.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BAKER, H. G. 1961. The adaptation of flowering plants to nocturnal and crepuscular pollinators. The Quarterly Review of Biology 36:6473.Google Scholar
BARKER, N. P., WESTON, P. H., RUTSCHMANN, F. & SAUQUET, H. 2007. Molecular dating of the ‘Gondwanan’ plant family Proteaceae is only partially congruent with the timing of the break-up of Gondwana. Journal of Biogeography 34:20122027.Google Scholar
CARLETON, M. D. & MUSSER, G. G. 1995. Systematic studies of oryzomyine rodents (Muridae, Sigmodontinae) – definition and distribution of Oligoryzomys vegetus (Bangs, 1902). Proceedings of the Biological Society of Washington 108:338369.Google Scholar
CARTHEW, S. M. & GOLDINGAY, R. L. 1997. Non-flying mammals as pollinators. Trends in Ecology and Evolution 12:104108.Google Scholar
CHALCOFF, V. R., AIZEN, M. A. & EZCURRA, C. 2012. Erosion of a pollination mutualism along an environmental gradient in a south Andean treelet, Embothrium coccineum (Proteaceae). Oikos 121:471480.CrossRefGoogle Scholar
COCUCCI, A. A. & SERSIC, A. N. 1998. Evidence of rodent pollination in Cajophora coronata (Losaceae). Plant Systematics and Evolution 211:113128.Google Scholar
COLLINS, B. G. & REBELO, T. 1987. Pollination biology of the Proteaceae in Australia and southern Africa. Austral Ecology 12:387421.CrossRefGoogle Scholar
FORD, H. A., PATON, D. C. & FORDE, N. 1979. Birds as pollinators of Australian plants. New Zealand Journal of Botany 17:509519.CrossRefGoogle Scholar
GEERTS, S. & PAUW, A. 2009. Hyper-specialization for long-billed bird pollination in a guild of South African plants: the Malachite Sunbird pollination syndrome. South African Journal of Botany 75:699706.CrossRefGoogle Scholar
GOLDINGAY, R. L., CARTHEW, S. M. & WHELAN, R. J. 1991. The importance of non-flying mammals in pollination. Oikos 61:7987.Google Scholar
HAZLEHURST, J. A., TINOCO, B. A., CÁRDENAS, S. & KARUBIAN, J. 2016. Pollination ecology of Oreocallis grandiflora (Proteaceae) at the northern and southern ends of its geographic range. Journal of Pollination Ecology 19:7180.Google Scholar
JACKSON, S. & NICOLSON, S. W. 2002. Xylose as a nectar sugar: from biochemistry to ecology. Comparative Biochemistry and Physiology–B Biochemistry and Molecular Biology 131:613620.Google Scholar
JANSON, C. H., TERBORGH, J. & EMMONS, L. H. 1981. Non-flying mammals as pollinating agents in the Amazonian forest. Biotropica 13:16.Google Scholar
JOHNSON, C. M. & PAUW, A. 2014. Adaptation for rodent pollination in Leucospermum arenarium (Proteaceae) despite rapid pollen loss during grooming. Annals of Botany 113:931938.Google Scholar
JOHNSON, L. A. S. & BRIGGS, B. G. 1975. On the Proteaceae – the evolution and classification of a southern family. Botanical Journal of the Linnean Society 70:83182.Google Scholar
JOHNSON, S. D., PAUW, A. & MIDGLEY, J. 2001. Rodent pollination in the African lily Massonia depressa (Hyacinthaceae). American Journal of Botany 88:17681773.Google Scholar
LUMER, C. 1980. Rodent pollination of Blakea (Melastomataceae) in a Costa Rican cloud forest. Brittonia 32:512517.Google Scholar
MELIDONIS, C. A. & PETER, C. I. 2015. Diurnal pollination, primarily by a single species of rodent, documented in Protea foliosa using modified camera traps. South African Journal of Botany 97:915.Google Scholar
NOBLECILLA, M. & PACHECO, V. 2012. Dieta de roedores sigmodontinos (Cricetidae) en los bosques montanos tropicales de Huánuco, Perú. Revista Peruana de Biología 19:313318.Google Scholar
PATTON, J. L., PARDIÑAS, U. F. J. & D'ELÍA, G. (eds). 2015. Mammals of South America. Volume 2, Rodents. University of Chicago Press, Chicago. 1336 pp.Google Scholar
PENNINGTON, R. T. 2007. Oreocallis. Pp. 31–35 in Prance, G. T., Plana, V., Edwards, K. S. & Pennington, R. T. (eds). Flora Neotropica Monograph 100: Proteaceae. The New York Botanical Garden Press, New York.Google Scholar
PRANCE, G. T. & PLANA, V. 1998. The American Proteaceae. Australian Systematic Botany 11:287299.Google Scholar
ROURKE, J. & WIENS, D. 1977. Convergent floral evolution in South African and Australian Proteaceae and its possible bearing on pollination by nonflying mammals. Annals of the Missouri Botanical Garden 64:117.Google Scholar
TIRIRA, D. 2007. Guía de campo de los Mamíferos del Ecuador. Ediciones Murciélago Blanco, Quito. 576 pp.Google Scholar
VAN DER PIJL, L. 1961. Ecological aspects of flower evolution. II. Zoophilous flower classes. Evolution 15:4459.Google Scholar
WESTON, P. H. 2007. Proteaceae. Pp. 364–404 in Kubitzki, K. (ed.). The families and genera of vascular plants volume 9: Flowering plants – Eudicots. Springer, Berlin.Google Scholar
WESTON, P. H. & BARKER, N. P. 2000. A new suprageneric classification of the Proteaceae, with an annotated checklist of genera. Telopea 11:314344.Google Scholar
WIENS, D. & ROURKE, J. 1978. Rodent pollination in southern African Protea spp. Nature 276:7173.Google Scholar
WILLMER, P. 2011. Pollination and floral ecology. Princeton University Press, Princeton. 789 pp.Google Scholar

Cárdenas supplementary material

Cárdenas supplementary material 1

Download Cárdenas supplementary material(Video)
Video 55.3 MB