Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T16:59:42.207Z Has data issue: false hasContentIssue false

Evidence for arrested succession within a tropical forest fragment in Singapore

Published online by Cambridge University Press:  10 March 2011

Gregory R. Goldsmith*
Affiliation:
Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
Liza S. Comita
Affiliation:
National Center for Ecological Analysis and Synthesis, 735 State St., Suite 300, Santa Barbara, CA 93101, USA Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá
Siew Chin Chua
Affiliation:
Center for Tropical Forest Science – Arnold Arboretum, Asia Programme/Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
*
1Corresponding author. Email: [email protected]

Extract

Secondary forests occupy a growing portion of the tropical landscape mosaic due to regeneration on abandoned pastures and other disturbed sites (Asner et al. 2009). Tropical secondary forests and degraded old-growth forests now account for more than half of the world's tropical forests (Chazdon 2003), and provide critical ecosystem services (Brown & Lugo 1990, Guariguata & Ostertag 2001).

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ASNER, G. P., RUDEL, T. K., AIDE, T. M., DEFRIES, R. & EMERSON, R. 2009. A contemporary assessment of change in humid tropical forests. Conservation Biology 23:13861395.Google Scholar
BREARLEY, F. Q., PRAJADINATA, S., KIDD, P. S., PROCTOR, J. & , SURIANTATA. 2004. Structure and characteristics of an old secondary rain forest in Central Kalimantan, Indonesia, and a comparison with adjacent primary forest. Forest Ecology and Management 195:385397.Google Scholar
BROWN, S. & LUGO, A. E. 1990. Tropical secondary forests. Journal of Tropical Ecology 6:132.Google Scholar
BURSLEM, D. F. R. P., GRUBB, P. J. & TURNER, I. M. 1996. Responses to simulated drought and elevated nutrient supply among shade-tolerant tree seedlings of lowland tropical forest in Singapore. Biotropica 28;636648.Google Scholar
CAPERS, R. S., CHAZDON, R. L., REDONDO BRENES, A. & VILCHEZ ALVARADO, B. 2005. Successional dynamics of woody seedling communities in wet tropical forests. Journal of Ecology 93:10711084.Google Scholar
CHAZDON, R. L. 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics 6:5171.Google Scholar
CHAZDON, R. L., PEARCY, R. W., LEE, D. W. & FETCHER, N. 1996. Photosynthetic responses to contrasting light environments. Pp. 555 in Mulkey, S., Chazdon, R. & Smith, A. P. (eds.). Tropical forest plant ecophysiology. Chapman and Hall, London.CrossRefGoogle Scholar
CORLETT, R. T. 1991. Plant succession on degraded land in Singapore. Journal of Tropical Forest Science 4:151161.Google Scholar
CORLETT, R. T. 1992. The ecological transformation of Singapore, 1819–1990. Journal of Biogeography 19:411420.Google Scholar
DENSLOW, J. S. & GUZMAN, G. S. 2000. Variation in stand structure, light, and seedling abundance across a tropical moist forest chronosequence, Panama. Journal of Vegetation Science 11:201212.Google Scholar
FACELLI, J. M. & PICKETT, S. T. A. 1991. Plant litter: its dynamics and effects on plant community structure. The Botanical Review 57:132.Google Scholar
FINEGAN, B. 1996. Patterns and processes in neotropical secondary rain forests: the first 100 years of succession. Trends in Ecology and Evolution 11:119124.Google Scholar
GRUBB, P. J., TURNER, I. M. & BURSLEM, D. F. R. P. 1994. Mineral nutrient status of coastal hill dipterocarp forest and adinandra belukar in Singapore: analysis of soil, leaves and litter. Journal of Tropical Ecology 10:559577.CrossRefGoogle Scholar
GUARIGUATA, M. R. & OSTERTAG, R. 2001. Neotropical secondary forest succession. Forest Ecology and Management 148:185206.Google Scholar
LAFRANKIE, J. V., DAVIES, S. J., WANG, L. K., LEE, S. K. & LUM, S. K. Y. 2005. Forest trees of Bukit Timah: population ecology in a tropical forest remnant. Simply Green, Singapore. 178 pp.Google Scholar
LUGO, A. E. & HELMER, E. 2004. Emerging forests on abandoned land: Puerto Rico's new forests. Forest Ecology and Management 190:145161.Google Scholar
METCALFE, D. J. & TURNER, I. M. 1998. Soil seed bank from lowland rain forest in Singapore: canopy-gap and litter-gap demanders. Journal of Tropical Ecology 14:103108.CrossRefGoogle Scholar
MONTGOMERY, R. A. & CHAZDON, R. L. 2002. Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia 131;165174.Google Scholar
NICOTRA, A. B., CHAZDON, R. L. & IRIARTE, S. V. B. 1999. Spatial heterogeneity of light and woody seedling regeneration in tropical forests. Ecology 80:19081926.Google Scholar
NORDEN, N., CHAZDON, R. L., CHAO, A., JIANG, Y. & VILCHEZ-ALVARADO, B. 2009. Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecology Letters 12:385394.Google Scholar
SHONO, K., DAVIES, S. J. & CHUA, Y. K. 2006. Regeneration of native plant species in restored forests on degraded lands in Singapore. Forest Ecology and Management 237:574582.Google Scholar
TURNER, I. M. & CORLETT, R. T. 1996. The conservation value of small, isolated fragments of lowland tropical rain forest. Trends in Ecology and Evolution 11:330333.Google Scholar
TURNER, I. M., TAN, H. T. W., WEE, Y. C., BIN IBRAHIM, ALI, CHEW, P. T. & CORLETT, R. T. 1994. A study of plant species extinction in Singapore: lessons for the conservation of tropical biodiversity. Conservation Biology 8:705712.Google Scholar