Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T12:04:49.227Z Has data issue: false hasContentIssue false

Estimation of root biomass based on excavation of individual root systems in a primary dipterocarp forest in Pasoh Forest Reserve, Peninsular Malaysia

Published online by Cambridge University Press:  30 March 2010

Kaoru Niiyama*
Affiliation:
Tohoku Research Center, Forestry and Forest Products Research Institute, 92-25 Nabeyashiki, Shimo-Kuriyagawa, Morioka, Iwate, 020-0123, Japan
Takuya Kajimoto
Affiliation:
Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan
Yojiro Matsuura
Affiliation:
Department of Forest Environment, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan
Tamon Yamashita
Affiliation:
Education and Research Center for Biological Resources, Shimane University, Matsue, Shimane 690-8504, Japan
Naoko Matsuo
Affiliation:
Faculty of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
Yuichiro Yashiro
Affiliation:
The River Basin Research Center, Gifu University, Gifu, 501-1193, Japan
Azizi Ripin
Affiliation:
Forest Research Institute Malaysia, Kepong, 52109, Selangor, Malaysia
Abd. Rahman Kassim
Affiliation:
Forest Research Institute Malaysia, Kepong, 52109, Selangor, Malaysia
Nur Supardi Noor
Affiliation:
Forest Research Institute Malaysia, Kepong, 52109, Selangor, Malaysia
*
1Corresponding author. Email: [email protected]

Abstract:

Precise estimation of root biomass is important for understanding carbon stocks and dynamics in tropical rain forests. However, limited information is available on individual root masses, especially large trees. We excavated 121 root systems of various species (78) and sizes (up to 116 cm in dbh), and estimated both above- and below-ground biomass in a lowland primary dipterocarp forest in the Pasoh Forest Reserve, Peninsular Malaysia. A tree census was conducted in four research plots (each 0.2 ha) and stand-level biomass was estimated. We examined relationships between tree size parameters and masses of coarse roots (roots ≥5 mm in diameter) and derived a dbh-based allometric equation. The amounts of coarse roots that were lost during excavation were corrected. Coarse-root biomass before and after correction for lost roots was estimated to be 63.8 and 82.7 Mg ha−1, indicating that significant amounts of roots (23%) were lost during the sampling. We also estimated the biomass of small root (<5 mm) by applying pipe-model theory. The estimate, 13.3 Mg ha−1, was similar to another estimate of small roots, 16.4 Mg ha−1, which was obtained directly by the soil-pit sampling method. Total below-ground (BGB) and above-ground biomass (AGB) was estimated to be 95.9 and 536 Mg ha−1, respectively. The biomass-partitioning ratio (BGB/AGB) was about 0.18. In conclusion, the dbh-based allometric equation for coarse roots developed in this study, which kept good linearity even including the data of larger trees, might be useful for evaluating below-ground carbon stocks in other stands of similar forest (old-growth dipterocarp) in South-East Asia.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ASHTON, P. S., OKUDA, T. & MANOKARAN, N. 2003. Pasoh research, past and present. Pp. 113 in Okuda, T., Manokaran, N., Matsumoto, Y., Niiyama, K., Thomas, S. C. & Ashton, P. S. (eds.). Pasoh: ecology of a lowland rain forest in Southeast Asia. Springer-Verlag, Tokyo.Google Scholar
BROWN, S., GILLESPIE, A. J. R. & LUGO, A. E. 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science 35:881902.Google Scholar
CAIRNS, M. A., BROWN, S., HELMER, E. H. & BAUMGARDNER, G. A. 1997. Root biomass allocation in the world's upland forests. Oecologia 111:111.CrossRefGoogle ScholarPubMed
CANNELL, M. G. R. 1982. World forest biomass and primary production data. Academic Press, London. 391 pp.Google Scholar
CHAVE, J., ANDALO, C., BROWN, S., CAIRNS, M. A., CHAMBERS, J. Q., EAMUS, D., FÖLSTER, H., FROMARD, F., HIGUCHI, N., KIRA, T., LESCURE, J.-P., NELSON, B. W., OGAWA, H., PUIG, H., RIÉRA, B. & YAMAKURA, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:8799.CrossRefGoogle ScholarPubMed
CHAVE, J., OLIVIER, J., BONGERS, F., CHATELET, P., FORGET, P.-M., MEER, P., NORDEN, N., RIERA, B. & CHARLES-DOMINIQUE, P. 2008. Above-ground biomass and productivity in a rain forest of eastern South America. Journal of Tropical Ecology 24:355366.CrossRefGoogle Scholar
CLARK, D. A. 2004. Tropical forests and global warming: slowing it down or speeding it up? Frontiers in Ecology and the Environment 2:7380.CrossRefGoogle Scholar
CLARK, D. A., BROWN, S., KICKLIGHTER, D. W., CHAMBERS, J. Q., THOMLINSON, J. R. & NI, J. 2001a. Measuring net production in forests: concepts and field methods. Ecological Applications 11:356370.CrossRefGoogle Scholar
CLARK, D. A., BROWN, S., KICKLIGHTER, D. W., CHAMBERS, J. Q., THOMLINSON, J. R., NI, J. & HOLLAND, E. A. 2001b. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecological Applications 11:371384.CrossRefGoogle Scholar
CLAUS, A. & GEORGE, E. 2005. Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Canadian Journal of Forest Research 35:16171625.CrossRefGoogle Scholar
ENQUIST, B. J. & NIKLAS, K. J. 2001. Invariant scaling relations across tree-dominated communities. Nature 410:655660.CrossRefGoogle ScholarPubMed
ENQUIST, B. J. & NIKLAS, K. J. 2002. Global allocation rules for patterns of biomass partitioning in seed plants. Science 295:15171520.CrossRefGoogle ScholarPubMed
ENQUIST, B. J., BROWN, J. H. & WEST, G. B. 1998. Allometric scaling of plant energetics and population density. Nature 395:163165.CrossRefGoogle Scholar
HIRATSUKA, M., CHINGCHAI, V., KANTINAM, P., SIRIRAT, J., SATO, A., NAKAYAMA, Y., MATSUNAMI, C., OSUMI, Y. & MORIKAWA, Y. 2005. Tree biomass and soil carbon in 17- and 22-year old stands of teak (Tectona grandis L.f.) in northern Thailand. Tropics 14:377382.CrossRefGoogle Scholar
HOSHIZAKI, K., NIIYAMA, K., KIMURA, K., YAMASHITA, T., BEKKU, Y., OKUDA, S., QUAH, E. S. & NOOR, N. S. M. 2004. Temporal and spatial variation of forest biomass in relation to stand dynamics in a mature, lowland tropical rainforest, Malaysia. Ecological Research 19:357363.CrossRefGoogle Scholar
HOUGHTON, R. A., LAWRENCE, K. T., HACKLER, J. L. & BROWN, S. 2001. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Global Change Biology 7:731746.CrossRefGoogle Scholar
HOZUMI, K., YODA, K., KOKAWA, S. & KIRA, T. 1969. Production ecology of tropical rain forests is southwestern Cambodia. I. Plant biomass. Nature and Life in Southeast Asia (Kyoto) 6:151.Google Scholar
JACKSON, R. B., CANADELL, J., EHLERINGER, J. R., MOONEY, H. A., SALA, O. E. & SCHULZE, E. D. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108:389411.CrossRefGoogle ScholarPubMed
JACKSON, R. B., MOONEY, H. A. & SCHULZE, E. D. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Ecology 94:73627366.Google ScholarPubMed
JARAMILLO, V. J., AHEDO-HERNÁNDEZ, R. & KAUFFMAN, J. B. 2003. Root biomass and carbon in a tropical evergreen forest of Mexico: changes with secondary succession and forest conversion to pasture. Journal of Tropical Ecology 19:457464.CrossRefGoogle Scholar
JENIK, J. 1976. Roots and root systems in tropical trees: morphologic and ecologic aspects. Pp. 323349 in Tomlinson, P. B. & Zimmermann, M. H. (eds.). Tropical trees as a living system. Cambridge University Press, Cambridge.Google Scholar
KARIZUMI, N. 1979. Illustrations of tree roots. Seibundou Shinkosha, Tokyo. 1121 pp.Google Scholar
KATO, R., TADAKI, Y. & OGAWA, H. 1978. Plant biomass and growth increment studies in Pasoh forest. Malayan Nature Journal 30:211224.Google Scholar
KENZO, T., ICHIE, T., HATTORI, D., ITIOKA, T., HANDA, C., OHKUBO, T., KENDAWANG, J. J., NAKAMURA, M., SAKAGUCHI, M., TAKAHASHI, N., OKAMOTO, M., TANAKA-ODA, A., SAKURAI, K. & NINOMIYA, I. 2009. Development of allometric relationships for accurate estimation of above- and below-ground biomass in tropical secondary forests in Sarawak, Malaysia. Journal of Tropical Ecology 25:371386.CrossRefGoogle Scholar
KIRA, T. 1969. Primary productivity of tropical rain forest. The Malayan Forester 32:375384.Google Scholar
KIRA, T. 1978. Community architecture and organic matter dynamics in tropical lowland rain forests of Southeast Asia with special reference to Pasoh Forest, West Malaysia. Pp. 561590 in Tomlinson, P. B. & Zimmermann, M. H. (eds.). Tropical trees as a living system. Cambridge University Press, Cambridge.Google Scholar
KIRA, T. & SHIDEI, T. 1967. Primary production and turnover of organic matter in different forest ecosystems of the Western Pacific. Japanese Journal of Ecology 17:7087.Google Scholar
KOCHUMMEN, K. M. 1997. Tree flora of Pasoh forest. Forest Research Institute Malaysia, Kuala Lumpur.Google Scholar
KOCHUMMEN, K. M., LAFRANKIE, J. V. & MANOKARAN, N. 1990. Floristic composition of Pasoh forest reserve, a lowland rain forest in Peninsular Malaysia. Journal of Tropical Forest Science 3:113.Google Scholar
MALHI, Y. & PHILLIPS, O. L. 2004. Tropical forests and global atmospheric change: a synthesis. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 359:549555.CrossRefGoogle ScholarPubMed
MANOKARAN, N., LAFRANKIE, J. V. & ISMAIL, R. 1991. Structure and composition of the dipterocarpaceae in a lowland rain forest in Peninsular Malaysia. Biotropica 41:317331.Google Scholar
NIKLAS, K. J. 2003. Reexamination of a canonical model for plant organ biomass partitioning. American Journal of Botany 90:250254.CrossRefGoogle ScholarPubMed
NIKLAS, K. J. 2005. Modeling below- and above-ground biomass for non-woody and woody plants. Annals of Botany 95:315321.CrossRefGoogle ScholarPubMed
NIKLAS, K. J. & ENQUIST, B. J. 2002. Canonical rules for plant organ biomass partitioning and annual allocation. American Journal of Botany 89:812819.CrossRefGoogle ScholarPubMed
OGAWA, H., YODA, K., OGINO, K. & KIRA, T. 1965. Comparative ecological studies on three main types of forest vegetation in Thailand. II. Plant biomass. Pp. 4980 in Kira, T. & Iwata, K. (eds.). Nature and life in Southeast Asia. Fauna and Flora Research Society, Kyoto.Google Scholar
OKUDA, T., ADACHI, N., YOSHIDA, K., NIIYAMA, K., NOOR, N. S. M., HUSSEIN, N. A., MANOKARAN, N. & HASHIN, M. 2003. Logging history and its impact on forest structure and species composition in the Pasoh forest reserve – implications for the sustainable management of natural resources and landscape. Pp. 1534 in Okuda, T., Manokaran, N., Matsumoto, Y., Niiyama, K., Thomas, S. C. & Ashton, P. S. (eds.). Pasoh: ecology of a lowland rain forest in Southeast Asia. Springer-Verlag, Tokyo.CrossRefGoogle Scholar
OKUDA, T., SUZUKI, M., NUMATA, S., YOSHIDA, K., NISHIMURA, S., ADACHI, N., NIIYAMA, K., MANOKARAN, N. & HASHIM, M. 2004. Estimation of aboveground biomass in logged and primary lowland rainforests using 3-D photogrammetric analysis. Forest Ecology and Management 203:6375.CrossRefGoogle Scholar
OLIVEIRA, M. R. G., VAN NOORDWIJK, M., GAZE, S., BROUWER, G., BONA, S., MOSCA, G. & HAIRIAH, K. 2000. Auger sampling, ingrowth cores and pinboard methods. Pp. 175210 in Smit, A. L., Bengough, A. G., Engels, C., van Noordwijk, M., Pellerin, S. & van de Geijn, S. C. (eds.). Root methods: A handbook. Springer-Verlag, Berlin.CrossRefGoogle Scholar
PAVLIS, J. & JENIK, J. 2000. Roots of pioneer trees in the Amazonian rain forest. Trees 14:442455.CrossRefGoogle Scholar
PHILLIPS, O. L., MALHI, Y., HIGUCHI, N., LAURANCE, W. F., NÚÑEZ, P. V., VÁSQUEZ, R. M., LAURANCE, S. G., FERREIRA, L. V., STERN, M., BROWN, S. & GRACE, J. 1998. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439442.CrossRefGoogle ScholarPubMed
PHILLIPS, O. L., MALHI, Y., VINCETI, B., BAKER, T., LEWIS, S. L., HIGUCHI, N., LAURANCE, W. F., NÚÑEZ VARGAS, P., VÁSQUEZ MARTINEZ, R., LAURANCE, S., FERREIRA, L. V., STERN, M., BROWN, S. & GRACE, J. 2002. Changes in growth of tropical forests: evaluating potential biases. Ecological Applications 12:576587.CrossRefGoogle Scholar
RICHARDSON, A. D. & DOHNA, H. 2003. Predicting root biomass from branching patterns of Douglas-fir root system. Oikos 100:96104.CrossRefGoogle Scholar
RÖDERSTEIN, M., HERTEL, D. & LEUSCHNER, C. 2005. Above- and below-ground litter production in three tropical montane forests in southern Ecuador. Journal of Tropical Ecology 21:483492.CrossRefGoogle Scholar
SANTANTONIO, D., HERMANN, R. K. & OVERTON, W. S. 1977. Root biomass studies in forest ecosystems. Pedobiologia 17:131.CrossRefGoogle Scholar
SHINOZAKI, K., YODA, K., HOZUMI, K. & KIRA, T. 1964. A quantitative analysis of plant form – the pipe model theory II. Further evidence of the theory and its application in forest ecology. Japanese Journal of Ecology 14:133139.Google Scholar
SIERRA, C. A., VALLE, J. I. D., ORREGO, S. A., MORENO, F. H., HARMON, M. E., ZAPATA, M., COLORADO, G. J., HERRERA, M. A., LARA, W., RESTREPO, D. E., BERROUET, L. M., LOAIZA, L. M. & BENJUMEA, J. F. 2007. Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecology and Management 243:299309.CrossRefGoogle Scholar
SOIL SURVEY STAFF. 2006. Keys to soil taxonomy. (Tenth edition). USDA-Natural Resources Conservation Service, Washington, DC.Google Scholar
SPRUGEL, D. G. 1983. Correcting for bias in log-transformed allometric equations. Ecology 64:209210.CrossRefGoogle Scholar
TIERNEY, G. L. & FAHEY, T. J. 2007. Principles and standards for measuring primary production. Pp. 120141 in Fahey, T. J. & Knapp, A. K. (eds.). Estimating belowground primary productivity. Oxford University Press, Oxford.Google Scholar
VOGT, K. A. & PERSSON, H. 1991. Measuring growth and development of roots. Pp. 477501 in Lassoie, J. P. & Hinckley, T. M. (eds.). Techniques and approaches in forest tree ecophysiology. CRC Press, Florida.Google Scholar
WEST, G. B., BROWN, J. H. & ENQUIST, B. J. 1997. A general model for the origin of allometric scaling laws in biology. Science 276:122126.CrossRefGoogle ScholarPubMed
YAMAKURA, T., HAGIHARA, A., SUKARDJO, S. & OGAWA, H. 1986. Aboveground biomass of tropical rain forest stands in Indonesian Borneo. Vegetatio 68:7182.CrossRefGoogle Scholar
YAMASHITA, T., KASUYA, N., KADIR, W. R., CHIK, S. W., QUA, E. S. & OKUDA, T. 2003. Soil and belowground characteristics of Pasoh forest reserve. Pp. 89109 in Okuda, T., Manokaran, N., Matsumoto, Y., Niiyama, K., Thomas, S. C. & Ashton, P. S. (eds.). Pasoh: ecology of a lowland rain forest in Southeast Asia. Springer-Verlag, Tokyo.CrossRefGoogle Scholar
YANAI, R. D., PARK, B. B. & HAMBURG, S. P. 2006. The vertical and horizontal distribution of roots in northern hardwood stands of varying age. Canadian Journal of Forest Research 36:450459.CrossRefGoogle Scholar