Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T01:19:09.224Z Has data issue: false hasContentIssue false

Effects of soils and topography on the distribution of tree species in a tropical riverine forest in south-eastern Brazil

Published online by Cambridge University Press:  10 July 2009

Ary T. Oliveira-Filho
Affiliation:
Departamento de Ciências Florestais, Escola Superior de Agricultura de Lavras (ESAL), 37200–000, Lavras, MG, Brazil
Enivanis A. Vilela
Affiliation:
Departamento de Biologia, Escola Superior de Agricultura de Lavras (ESAL), 37200–000, Lavras, MG, Brazil
Douglas A. Carvalho
Affiliation:
Departamento de Biologia, Escola Superior de Agricultura de Lavras (ESAL), 37200–000, Lavras, MG, Brazil
Manuel L. Gavilanes
Affiliation:
Departamento de Biologia, Escola Superior de Agricultura de Lavras (ESAL), 37200–000, Lavras, MG, Brazil

Abstract

The relationships between soil properties, topography and tree species distribution were analysed in a tropical riverine forest at the margins of the Rio Grande, in Bom Sucesso, state of Minas Gerais, south-eastern Brazil. The forest was sampled by three 0.18 ha plots, with each plot made up of eight contiguous 15 m X 15 m quadrats, four of which were placed at the river margin and the remaining four in the forest interior. A canonical correspondence analysis indicated that the species' density distribution was significantly correlated with some soil chemical characteristics and topographical features. The soils of the three sample plots showed statistically significant differences for the levels of Ca, Mg, K and pH, with the fertility (expressed by the cation exchange capacity) increasing from Plot I to Plot III. These variations were mainly explained by the first canonical axis while the second was strongly correlated with topographical variables, separating the quadrats into two groups: those of the higher and steeper sites from those of the lower sites. The only soil property that was significantly different in lower and upper sites was the concentration of phosphorus. No significant difference in tree species distribution was found between river margin and interior quadrats, certainly because this forest sector lies on the outer side of a curve of the river where erosion is currently building high and steep river banks and forcing the forest to retreat. A tentative ecological classification of the 30 most abundant species according to their habitat preference in terms of soil fertility and topographical sites, and to their growth strategy in the forest dynamics, is presented. It is suggested that these factors play an important role in promoting the coexistence of tree species in this type of forest.

Resumo

As relaçōes entre características do solo, topografia e distribuiçāo de espécies arbóreas foram analisadas em um trecho de floresta ripária nas margens do Rio Grande, em Bom Sucesso, sul de Minas Gerais, Brasil. A floresta foi amostrada por três blocos de oito parcelas contiguas com 15 m x 15 m, quatro das quais situadas na margem do no e as demais no interior da floresta. Uma análise de correspondência canônica indicou que a distribuiçāo da densidade das espécies estava significativamente correlacionada com certas propriedades químicas do solo e com a topografia. Os solos dos três blocos mostraram diferenças significativas, nos níveis de Ca, Mg, K e pH, com a fertilidade (expressa pela capacidade de troca catiônica) crescendo do Bloco I para o Bloco III. Estas variaçōes foram explicadas principalmente pelo primeiro eixo de ordenaçāo, enquanto o segundo eixo expressou principalmente as variáveis topográficas, discriminando as parcelas em dois grupos: sítios mais altos e inclinados e sitios mais baixos. A única caracteristíca dos solos que mostrou-se significativamente diferente nos sítios altos e baixos foi a concentraçāo de fósforo. Nenhuma diferença significativa foi encontrada entre parcelas da margem e do interior, certamente porque este trecho de floresta esta situado no lado externo de uma curva do rio onde a erosāo por solapamento está presentemente construindo margens inclinadas e forçando o recuo da floresta. É apresentada uma tentativa de classificaçāo ecológica das 30 espécies mais abundantes de acordo com sua preferência por habitats em termos de fertilidade dos solos e sítios topográficos e de acordo com sua estratégia de crescimento na dinâmica da floresta. Sugere-se que estes fatores desempenham um importante papel em promover a coexistencia das espécies de árvores neste tipo de floresta.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Adámoli, J., Sennhauser, E., Acero, J. M. & Rescia, A. 1991. Stress and disturbance: vegetation dynamics in the dry Chaco region of Argentina. Pp. 147156 in Werner, P. (ed.). Savanna ecology and management, Australian perspectives and intercontinental comparisons. Blackwell Scientific Publications, London.Google Scholar
Basnet, K. 1992. Effect of topography on the pattern of trees in a tabonuco (Dacryoides excelsa) dominated forest of Puerto Rico. Biotropica 24:3142.CrossRefGoogle Scholar
Bertoni, J. E. A. & Martins, F. R. 1989. Composição florística de uma floresta ripária na Reserva Estadual de Porto Ferreira (SP). Acta Botanica Brasilica 1:1726.CrossRefGoogle Scholar
Bertoni, J. E. A., Stubblebine, W. H., Martins, F. R. & Leitāo Filho, H. F. 1982. Nota prévia: comparação fitossocilógica das principais espécies de florestas de terra firme e de várzea na Reserva Estadual de Porto Ferreira (SP). Silvicultura em Sāo Paulo 16A:563571. Anais do Congresso National de Essências Nativas.Google Scholar
Black, G. A., Dobzhansky, Th. & Pa Van, C. 1950. Some attempts to estimate species diversity and population density of trees in Amazonian forests. Botanical Gazette 111:413425.CrossRefGoogle Scholar
Bourgeron, P. S. 1983. Spatial aspects of vegetation structure. Pp. 2947 in Golley, F. B. (ed.). Ecosystems of the world 14A – Tropical rain forest ecosystems, structure and function. Elsevier, Amsterdam.Google Scholar
Brinson, M. M. 1990. Riverine forests. Pp. 87141 in Lugo, A. E., Brinson, M. M. & Brown, S. (eds). Ecosystems of the world 15 – Forested wetlands. Elsevier, Amsterdam.Google Scholar
Brower, J. E. & Zar, J. H. 1984. Field and laboratory methods for general ecology. Wm. C. Brown Publishers, Dubuque. 226 pp.Google Scholar
Campbell, D. G., Daly, D. C., Prance, G. T. & Maciel, U. N. 1986. Quantitative ecological inventory of terra firme and várzea tropical forest on the Rio Xingu, Brazilian Amazon. Brittonia 38:369393.CrossRefGoogle Scholar
Campbell, D. G., Stone, J. J. & JrRosas, A. 1992. A comparison of the phytosociology and dynamics of three floodplain (várzea) forests of known ages, Rio Juruá, western Brazilian Amazon. Botanical Journal of the Linnean Society 108:213237.Google Scholar
Causton, D. R. 1988. An introduction to vegetation analysis, principles, practice and interpretation. Unwin Hyman, London.Google Scholar
Eidt, R. C. 1968. The climatology of South America. Pp. 5481 in Fittkau, E. J., lilies, J., Klinge, H., Schwabe, G. H. & Sioli, H. (eds). Biogeography and ecology in South America. Vol. 1. W. Junk Publishers, The HagueGoogle Scholar
Embrapa, . 1979. Manual de Métodos de Análises de Solos. Serviço Nacional de Levantamento e Conservaçāo de Solos, Empresa Brasileira de Pesquisa Agropecuária, Rio de Janeiro. 282 pp.Google Scholar
Felfili, J. M. & Silva Júnior, M. C. 1992. Floristic composition, phytosociology and comparison of cerrado and gallery forests at Fazenda Agua Limpa, Federal District, Brazil. Pp. 393416 in Furley, P. A., Proetor, J. & Ratter, J. A.Nature and dynamics of forest-savanna boundaries. Chapman & Hall, London.Google Scholar
Fowler, N. 1988. The effects of environmental heterogeneity in space and time on the regulation of populations and communities. Pp. 249269 in Davy, A. J., Hutchings, M. J. & Watkinson, A. R. (eds). Plant population ecology. Blackwell Scientific Publications, Oxford.Google Scholar
Gandolfi, S. 1991. Estudo florístico e fitossociológico de uma floresta residual na área do Aeroporto International de Sāo Paulo, município de Guarulhos, SP. Master's thesis, Universidade Estadual de Campinas, Campinas. 232 pp.Google Scholar
Gartlan, J. S., Newbery, D. McC., Thomas, D. W. & Waterman, P. G. 1986. The influence of topography and soil phosphorus on the vegetation of Korup Reserve, Cameroun. Vegetatio 65:131148.Google Scholar
Gibbs, P. & Letāo Filho, H. F. 1978. Floristic composition of an area of gallery forest near Mogi Guaçu, state of Sāo Paulo, S. E. Brazil. Revista Brasileira de Botânica 1:151156.Google Scholar
Gibbs, P., Leitāo Filho, H. F. & Abbot, R. J. 1980. Application of the point-centred quarter method in a floristic survey of an area of gallery forest at Mogi Guaçu, SP, Brazil. Revista Brasileira dt Botânica 3:1722.Google Scholar
Hartshorn, G. S. 1990. Gap-phase dynamics and tropical tree species richness. Pp. 6573 in Holm-Nielsen, L. B., Nielsen, I. C. & Balslev, H. (eds). Tropical forests – botanical dynamics, speciation and diversity. Academic Press, London.Google Scholar
Hope, A. C. A. 1968. A simplified Monte Carlo significance test procedure. Journal of the Royal Statistic Satiety Series B 30:582598.Google Scholar
Hornung, M. 1990. Measurement of nutrient losses resulting from soil erosion. Pp. 80102 in Harrison, A. F., Ineson, P. & Heal, O. W. (eds). Nutrient cycling in terrestrial ecosystems. Elsevier Apl. Sc., London.Google Scholar
Irion, G. & Adis, J. 1979. Evoluçāo de florestas amazônicas inundadas, de igapó – um exemplo do Rio Tarumā Mirim. Acta Amazonica 9:299303.Google Scholar
Johnston, M. H. 1992. Soil-vegetation relationships in a tabonuco forest community in the Luquillo Mountains of Puerto Rico. Journal of Tropical Ecology 8:253263.Google Scholar
Jongman, R. H. G., ter Braak, C. J. F. & van Tongeren, O. F. R. 1987. Data analysis in community and landscape ecology. Pudoc, Wageningen.Google Scholar
Junk, W. J. 1990. Flood tolerance and tree distribution in central Amazonian floodplains. Pp. 4764 in Holm-Nielson, L. B., Nielsen, I. C. & Balslev, H. (eds). Tropical forests – botanical dynamics, speciation and diversity. Academic Press, London.Google Scholar
Junk, W. L. 1984. Ecology of the várzea, floodplain of Amazonian white-water rivers. Pp. 216243 in Sioli, H. (ed.). The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Dr W. Junk Publishers, Dordrecht.Google Scholar
Kalliola, R., Salo, J., Puhakka, M. & Rajasilta, M. 1991. New site formation and colonizing vegetation in primary succession on the western Amazon floodplains. Journal of Ecology 79:877901.Google Scholar
Kellman, M. & Tackaberry, R. 1993. Disturbance and tree species coexistence in tropical riparian forest fragments. Global Ecology and Biogeography Letters 3:19.CrossRefGoogle Scholar
Lamotte, S. 1990. Fluvial dynamics and succession in the lower Ucayali river basin, Peruvian Amazonia. Forest Ecology and Management 33/34:141156.CrossRefGoogle Scholar
Lorimer, C. G. 1985. Methodological considerations in the analysis of forest disturbance history. Canadian Journal of Forestry Research 15:20213.CrossRefGoogle Scholar
MacDougall, A. & Kellman, M. 1992. The understorey light regime and patterns of tree seedlings in tropical riparian forest patches. Journal of Biogeography 19:667675.Google Scholar
Mantovani, W., Rossi, L., Romaniuc Neto, S., Assad-Ludewigs, I. Y., Wanderley, M. G. L., Melo, M. M. R. F. & Toledo, C. B. 1989. Estudo fitossociológico de áreas de mata ciliar em Mogi Guaçu, SP, Brasil. Pp. 235267 in Barbosa, L. M. (ed.). Simpósio sobre mata ciliar, Anais. Fundaçāo Cargill, Campinas.Google Scholar
McCaig, M. 1985. Soil properties and subsurface hydrology. Pp. 121140 in Richards, K. S., Arnett, R. R. & Ellis, S. (eds). Geomorphology and soils. George Allen & Unwin, London.Google Scholar
Medley, K. E. 1992. Patterns of forest diversity along the Tana River, Kenya. Journal of Tropical Ecology 8:353371.Google Scholar
Newbery, D. McC., Gartlan, J. S., McKey, D. B. & Waterman, P. G. 1986. The influence of drainage and soil phosphorus on the vegetation of Douala-Edea Forest reserve, Cameroun. Vegetatio 65:149162.Google Scholar
Oliveira-Filho, A. T. 1989. Composição floristica e estrutura comunitária da floresta de galeria do córrego da Paciência, Cuiabá (MT). Acta Bolanica Brasilica 3:91112.Google Scholar
Oliveira-Filho, A. T., Ratter, J. A. & Shepherd, G. J. 1990. Floristic composition and community structure of a central Brazilian gallery forest. Flora 184:103117.CrossRefGoogle Scholar
Oliveira-Filho, A. T., Vilela, E. A., Gavilanes, M. L. & Carvalho, D. A. 1993. Comparison of the woody flora and soils of six areas of semideciduous montane forest in southern Minas Gerais, Brazil. Edinburgh Journal of Botany: in press.Google Scholar
Oliveira-Filho, A. T., Vilela, E. A., Gavilanes, M. L. & Carvalho, D. A. 1994. Effect of flooding regime and understorey bamboos on the physiognomy and tree species composition of a tropical semideciduous forest in Southeastern Brazil. Vegetatio: in press.Google Scholar
Pires, J. M. & Koury, H. M. 1958. Estudo de urn trecho de mata de várzea próximo de Belém. Boletim Técnico I.A.N. no. 36:344.Google Scholar
Prance, G. T. 1979. Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonia 31:2638.Google Scholar
Ratter, J. A. 1980. Notes on the vegetation of Fazenda Água Limpa (Brasilia, DF, Brazil). Royal Botanic Garden, Edinburgh. 111 pp.Google Scholar
Ratter, J. A., Askew, G. P., Montgomery, R. F. & Gifford, D. R. 1978. Observations on forests of some mesotrophic soils in Central Brazil. Revista Brasileira de Botánica 1:4758.Google Scholar
Rodrigues, W. A. 1961. Estudo preliminar de mata de várzea alta de uma ilha do baixo Rio Negro de solo argiloso e ümido. Publicação no. 10 do Instituto Nacional de Pesquisa da Amazónia. Manaus, Brazil.Google Scholar
Rozza, A. & Ribeiro, C. A. 1992. Estudo florístico e fitossocológico de um fragmento de mata ciliar no campus da ESALQ, Piracicaba, SP. Pp. 725 in Anais do VIII Congresso da Sociedade Botânica de Sāo Paulo.Google Scholar
Sokal, R. R. & Rohlf, F. J. 1981. Biometry. Freeman, San Francisco. 859 pp.Google Scholar
Swaine, M. D. & Hall, J. B. 1988. The mosaic theory of forest regeneration and determination of forest composition in Ghana. Journal of Tropical Ecology 4:253269.Google Scholar
Swaine, M. D. & Whitmore, T. C. 1988. On the definition of ecological species groups in tropical rain forests. Vegetatio 75:8186.CrossRefGoogle Scholar
ter Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:11671179.CrossRefGoogle Scholar
ter Braak, C. J. F. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69:6977.Google Scholar
ter Braak, C. J. F. 1988. CANOCO – A FORTRAN program for canonical community ordination by (partial) (detrended) (canonical) correspondence analysis, principal components analysis and redundancy analysis Version 2.1. Technical report LWA-88-02, TNO – Institute of Applied Computer Science, Wageningen.Google Scholar
Veloso, H. P., Rangel Filho, A. L. R. & Lima, J. C. A. 1991. Classificaçāo da vegetaçāo brasileira adaptada a um sistema universal. Instituto Brasileiro de Geografia e Estatistica (IBGE), Rio de Janeiro. 123 pp.Google Scholar
Whitmore, T. C. 1988. The influence of tree population dynamics on forest species composition. Pp. 271291 in Davy, A. J., Hutchings, M. J. & Watkinson, A. R. (eds). Plant population ecology. Blackwell Scientific Publications, Oxford.Google Scholar
Whitmore, T. C. 1990. An introduction to tropical rain forests. Oxford University Press, Oxford. 226 pp.Google Scholar
Zar, J. H. 1984. Biostatistical analysis. Prentice-Hall, New Jersey. 718 pp.Google Scholar