Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:19:55.299Z Has data issue: false hasContentIssue false

Effects of forest and cave proximity on fruit set of tree crops in tropical orchards in Southern Thailand

Published online by Cambridge University Press:  13 July 2016

Tuanjit Sritongchuay*
Affiliation:
Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand, 90122
Claire Kremen
Affiliation:
Environmental Science, Policy and Management, University of California Berkeley, California, USA
Sara Bumrungsri
Affiliation:
Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand, 90122
*
1Corresponding author. Email: [email protected]

Abstract:

Deforestation and forest fragmentation are contributing to declines in crop pollinator populations worldwide. Several studies have examined the impact of forest proximity on plant pollination ecology, but concentrated on single crop species. However, it can be more informative to investigate multiple crop and pollinator species in a community, because different pollinator groups may respond differently to forest distance. We evaluated flower visitor diversity, visitation frequency, and fruit set for three crop species (rambutan, durian and mango) in 10 pairs of mixed fruit orchards. Each pair consisted of one orchard near to (< 1 km) and one orchard far from (> 7 km) the forest edge. Rambutan fruit set was significantly influenced by distance to forest. The main visitors of rambutan flowers were stingless bees. In contrast, the dominant visitors to durian and mango flowers were nectarivorous bats and flies, respectively, and the fruit set of these crops were not significantly influenced by distance to forest. However, durian fruit set was negatively affected by distance to the nearest cave inhabited by nectarivorous bats. This study demonstrates that both caves and forests can be important pollinator sources for agricultural crops, and that the dispersal success of pollinators is related to isolation from source habitats. Maintaining forest patches and limestone karsts may provide stepping stones across fragmented landscapes, and attract greater numbers of pollinators to agricultural areas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ACHARYA, P. R., RACEY, P. A., SOTTHIBANDHU, S. & BUMRUNGSRI, S. 2015. Feeding behaviour of the dawn bat (Eonycteris spelaea) promotes cross pollination of economically important plants in Southeast Asia. Journal of Pollination Ecology 15: 4450.Google Scholar
ARAÚJO, E. D., COSTA, M., CHAUD-NETTO, J. & FOWLER, H. G. 2004. Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications. Brazilian Journal of Biology 64:563568.CrossRefGoogle ScholarPubMed
BAWA, K. S. 1990. Plant-pollinator interactions in tropical rain forests. Annual Review of Ecology and Systematics 21:399422.Google Scholar
BLANCHE, K. R., LUDWIG, J. A. & CUNNINGHAM, S. A. 2006. Proximity to rainforest enhances pollination and fruit set in orchards. Journal of Applied Ecology 43:11821187.Google Scholar
BLANCHE, R. & CUNNINGHAM, S. A. 2005. Rain forest provides pollinating beetles for Atemoya crops. Journal of Economic Entomology 98:11931201.CrossRefGoogle ScholarPubMed
BLÜTHGEN, N. & KLEIN, A.-M. 2011. Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic and Applied Ecology 12:282291.CrossRefGoogle Scholar
BONACCORSO, F. J., WINKELMANN, J. R., TODD, C. M. & MILES, A. C. 2014. Foraging movements of epauletted fruit bats (Pteropodidae) in relation to the distribution of sycamore figs (Moraceae) in Kruger National Park, South Africa. Acta Chiropterologica 16:4152.Google Scholar
BROWN, J. C. & ALBRECHT, C. 2001. The effect of tropical deforestation on stingless bees of the genus Melipona (Insecta: Hymenoptera: Apidae: Meliponini) in central Rondonia, Brazil. Journal of Biogeography 28:623634.Google Scholar
BUMRUNGSRI, S. 1997. Roost selection of cave dwelling bats in Songkla and Satun Provinces. M.Sc. thesis, Kasetsart University, Bangkok, 79 pp. [In Thai with English abstract]Google Scholar
BUMRUNGSRI, S., HARBIT, A., BENZIE, C., CARMOUCHE, K., SRIDITH, K. & RACEY, P. 2008. The pollination ecology of two species of Parkia (Mimosaceae) in Southern Thailand. Journal of Tropical Ecology 24:467475.Google Scholar
BUMRUNGSRI, S., SRIPAORAYA, E., CHONGSIRI, T., SRIDITH, K. & RACEY, P. A. 2009. The pollination ecology of durian (Durio zibethinus, Bombacaceae) in Southern Thailand. Journal of Tropical Ecology 25:8592.Google Scholar
BUMRUNGSRI, S., LANG, D., HARROWER, C., SRIPAORAYA, E., KITPIPIT, K. & RACEY, P. A. 2013. The dawn bat, Eonycteris spelaea Dobson (Chiroptera: Pteropodidae) feeds mainly on pollen of economically important food plants in Thailand. Acta Chiropterologica 15:95104.Google Scholar
BURNHAM, K. P. & ANDERSON, D. R. 2004. Multimodel inference understanding AIC and BIC in model selection. Sociological Methods & Research 33:261304.Google Scholar
CARVALHEIRO, L. G., SEYMOUR, C. L., VELDTMAN, R. & NICOLSON, S. W. 2010. Pollination services decline with distance from natural habitat even in biodiversity-rich areas. Journal of Applied Ecology 47:810820.Google Scholar
DAG, A. & GAZIT, S. 2000. Mango pollinators in Israel. Journal of Applied Horticulture (Lucknow) 2:3943.Google Scholar
ELTZ, T., BRÜHL, C. A., VAN DER KAARS, S. & LINSENMAIR, K. E. 2002. Determinants of stingless bee nest density in lowland dipterocarp forests of Sabah, Malaysia. Oecologia 131:2734.CrossRefGoogle ScholarPubMed
FORTUNA, M. A. & BASCOMPTE, J. 2006. Habitat loss and the structure of plant–animal mutualistic networks. Ecology Letters, 9: 281286.Google Scholar
FRANCIS, C. M. & BARRETT, P. 2008. A field guide to the mammals of Thailand and South-East Asia. Asia Books, London. 393 pp.Google Scholar
GATHMANN, A. & TSCHARNTKE, T. 2002. Foraging ranges of solitary bees. Ecology 71:757764.Google Scholar
GIRÃO, L. C., LOPES, A. V., TABARELLI, M. & BRUNA, E. M. 2007. Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic forest landscape. PLoS ONE 2: e908.Google Scholar
GREENLEAF, S. S. & KREMEN, C. 2006a. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proceedings of the National Academy of Sciences USA 103:1389013895.Google Scholar
GREENLEAF, S. S. & KREMEN, C. 2006b. Wild bee species increase tomato production and respond differently to surrounding land use in Northern California. Biological Conservation 133:8187.CrossRefGoogle Scholar
GREENLEAF, S. S., WILLIAMS, N. M., WINFREE, R. & KREMEN, C. 2007. Bee foraging ranges and their relationship to body size. Oecologia 153:589596.CrossRefGoogle ScholarPubMed
HALCROFT, M. T., SPOONER-HART, R., HAIGH, A. M., HEARD, T. A. & DOLLIN, A. 2013. The Australian stingless bee industry: a follow-up survey, one decade on. Journal of Apicultural Research 52:17.Google Scholar
HEARD, T. A. 1994. Behaviour and pollinator efficiency of stingless bees and honey bees on macadamia flowers. Journal of Apicultural Research 33:191198.Google Scholar
HEARD, T. A. 1999. The role of stingless bees in crop pollination. Annual Review of Entomology 44:183206.Google Scholar
HEARD, T. A. & EXLEY, E. M. 1994. Diversity, abundance, and distribution of insect visitors to macadamia flowers. Environmental Entomology 23:91100.Google Scholar
HEARD, T. A. & DOLLIN, A. E. 2000. Stingless bee keeping in Australia: snapshot of an infant industry. Bee World 81:116125.CrossRefGoogle Scholar
HOLLING, C. S. 1994. Cross-scale morphology, geometry, and dynamics of ecosystems. Pp. 351423 in Samson, F. B. & Knopf, F. L. (eds). Ecosystem management. Springer, New York.Google Scholar
HONSHO, C., SOMSRI, S., TETSUMURA, T., YAMASHITA, K. & YONEMORI, K. 2007. Effective pollination period in durian (Durio zibethinus Murr.) and the factors regulating it. Scientia Horticulturae 111:193196.Google Scholar
HOPKINS, H. C. F. 1994. The Indo-Pacific species of Parkia (Leguminosae: Mimosoideae). Kew Bulletin 1:181234.Google Scholar
JHA, S. & DICK, C. W. 2010. Native bees mediate long-distance pollen dispersal in a shade coffee landscape mosaic. Proceedings of the National Academy of Sciences USA 107:1376013764.CrossRefGoogle Scholar
KLEIN, A.-M., STEFFAN-DEWENTER, I. & TSCHARNTKE, T. 2003a. Pollination of Coffea canephora in relation to local and regional agroforestry management. Journal of Applied Ecology 40: 837845.Google Scholar
KLEIN, A.-M., STEFFAN–DEWENTER, I. & TSCHARNTKE, T. 2003b. Fruit set of highland coffee increases with the diversity of pollinating bees. Proceedings of the Royal Society of London B: Biological Sciences 270:955961.Google Scholar
KLEIN, A. M., BOREUX, V., BAUHUS, J., CHAPPELL, M. J., FISCHER, J. & PHILPOTT, S. M. 2014. Forest islands in an agricultural sea. Pp. 7995 in Kettle, C. J. & Koh, L. P. (eds). Global forest fragmentation. CPI, Croydon.Google Scholar
KREMEN, C., WILLIAMS, N. M. & THORP, R. W. 2002. Crop pollination from native bees at risk from agricultural intensification. Proceedings of the National Academy of Sciences USA 99:1681216816.CrossRefGoogle ScholarPubMed
KREMEN, C., WILLIAMS, N. M., BUGG, R. L., FAY, J. P. & THORP, R. W. 2004. The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecology Letters 7:11091119.Google Scholar
KUSUMANINGTYAS, R., KOBAYASHI, S. & TAKEDA, S. 2006. Mixed species gardens in Java and the transmigration areas of Sumatra, Indonesia: a comparison. Journal of Tropical Agriculture 44: 1522.Google Scholar
LENNARTSSON, T. 2002. Extinction thresholds and disrupted plant-pollinator interactions in fragmented plant populations. Ecology 83:30603072.Google Scholar
LIM, A. L. 1984. The reproductive biology of rambutan, Nephelium lappaceum L. (Sapindaceae). Gardens’ Bulletin Singapore 37: 181192.Google Scholar
MEMMOTT, J. & GODFRAY, H. C. J. 1993. Parasitoid webs. Pp. 217234 in Lasalle, J. & Gauld, I. D. (eds). Hymenoptera and biodiversity. CABI, Wallingford.Google Scholar
MICHON, G. & MARY, F. 1994. Conversion of traditional village gardens and new economic strategies of rural households in the area of Bogor, Indonesia. Agroforestry Systems 25:3158.Google Scholar
MICKLEBURGH, S. P., HUTSON, A. M. & RACEY, P. A. 1992. Old World fruit bats. An action plan for their conservation. IUCN, Gland. 252 pp.Google Scholar
MOELLER, D. A. 2004. Facilitative interactions among plants via shared pollinators. Ecology 85:32893301.CrossRefGoogle Scholar
MORANDIN, L. A. & WINSTON, M. L. 2006. Pollinators provide economic incentive to preserve natural land in agroecosystems. Agriculture, Ecosystems and Environment 116:289292.Google Scholar
MORANDIN, L. A., WINSTON, M. L., ABBOTT, V. A. & FRANKLIN, M. T. 2007. Can pastureland increase wild bee abundance in agriculturally intense areas? Basic and Applied Ecology 8:117124.Google Scholar
NATHAN, R. 2005. Long-distance dispersal research: building a network of yellow brick roads. Diversity and Distributions 11:125130.CrossRefGoogle Scholar
OLLERTON, J., WINFREE, R. & TARRANT, S. 2010. How many flowering plants are pollinated by animals? Oikos 120: 321326.Google Scholar
QUESADA, M., STONER, K. E., ROSAS-GUERRERO, V., PALACIOS-GUEVARA, C. & LOBO, J. A. 2003. Effects of habitat disruption on the activity of nectarivorous bats (Chiroptera: Phyllostomidae) in a dry tropical forest: implications for the reproductive success of the neotropical tree Ceiba grandiflora. Oecologia 135: 400406.CrossRefGoogle Scholar
QUESADA, M., STONER, K. E., LOBO, J. A., HERRERIAS-DIEGO, Y., PALACIOS-GUEVARA, C., MUNGUÍA-ROSAS, M. A., O.-SALAZAR, K. A. & ROSAS-GUERRERO, V. 2004. Effects of forest fragmentation on pollinator activity and consequences for plant reproductive success and mating patterns in bat-pollinated Bombacaceous trees. Biotropica 36:131138.Google Scholar
RITCHIE, M. E. & OLFF, H. 1999. Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400:557560.CrossRefGoogle ScholarPubMed
RICKETTS, T. H. 2004. Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conservation Biology 18: 12621271.Google Scholar
RICKETTS, T. H., REGETZ, J., STEFFAN-DEWENTER, I., CUNNINGHAM, S. A., KREMEN, C., BOGDANSKI, A., GEMMILL-HERREN, B., GREENLEAF, S. S., KLEIN, A. M., MAYFIELD, M. M. & MORANDIN, L. A. 2008. Landscape effects on crop pollination services: are there general patterns? Ecology Letters 11: 499515.Google Scholar
RINCÓN-RABANALES, M., ROUBIK, D. W., GUZMÁN, M. A., SALVADOR-FIGUEROA, M., ADRIANO-ANAYA, L. & OVANDO, I. 2015. High yields and bee pollination of hermaphroditic rambutan (Nephelium lappaceum L.) in Chiapas, Mexico. Fruits 70: 2327.CrossRefGoogle Scholar
SHARMA, D. K. & SINGH, R. N. 1970. Self-incompatibility in mango (Mangifera indica L.). Horticultural Research 10: 108118.Google Scholar
SHIVARAMU, K., SAKTHIVEL, T. & REDDY, P. V. 2012. Diversity and foraging dynamics of insect pollinators on rambutan (Nephelium lappaceum L.). Pest Management in Horticultural Ecosystems 18:158160.Google Scholar
SINGH, S., DHYANI, D. & AHUJA, P. S. 2011. Apomixis in plants – embryology, genetics and molecular basis. Journal of Cell and Plant Sciences 2:2431.Google Scholar
SRITHONGCHUAY, T., BUMRUNGSRI, S. & SRIPAO-RAYA, E. 2008. The pollination ecology of the late-successional tree, Oroxylum indicum (Bignoniaceae) in Thailand. Journal of Tropical Ecology 24:477484.Google Scholar
START, A. N. 1974. The feeding biology in relation to food sources of nectarivorous bats (Chiroptera: Macroglossinae) in Malaysia. Unpublished PhD Thesis, University of Aberdeen. 247 pp.Google Scholar
START, A. N. & MARSHALL, A. G. 1974. Nectarivorous bats as pollinators of trees in West Malaysia. Pp. 141150 in Burley, J. & Styles, B. T. (eds). Tropical trees: variation, breeding and conservation in tropical forest trees. Academic Press, London.Google Scholar
STEFFAN-DEWENTER, I. & TSCHARNTKE, T. 1999. Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432440.Google Scholar
STEWART, A. B., MAKOWSKY, R. & DUDASH, M. R. 2014. Differences in foraging times between two feeding guilds within Old World fruit bats (Pteropodidae) in southern Thailand. Journal of Tropical Ecology 30:249257.Google Scholar
STONER, K. E., QUESADA, M., ROSAS-GUERRERO, V. & LOBO, J. A. 2002. Effects of forest fragmentation on the colima long-nosed bat (Musonycteris harrisoni) foraging in tropical dry forest of Jalisco, Mexico. Biotropica 34:462467.Google Scholar
TSCHARNTKE, T., KLEIN, A. M., KRUESS, A., STEFFAN-DEWENTER, I. & THIES, C. 2005. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecology Letters 8:857874.Google Scholar
VAN WELZEN, P. C., LAMB, A. & WONG, W. W. W. 1988. Edible Sapindaceae in Sabah. Nature Malaysiana 13:1025.Google Scholar
WAHALA, S. & HUANG, P. 2005. Foraging distance in the stingless bee Trigona thoracica. Pp. 7174 in Harrison, R. D. (eds). Proceedings of the CTFS-AA International Field Biology Course 2005. Center for Tropical Forest Science–Arnold Arboretum Asia Program, National Parks, Wildlife and Plant Conservation Department, Khao Chong, Thailand.Google Scholar
WHITEHEAD, C. 1959. The rambutan, a description of the characteristics and potential of the more important varieties. Malayan Agricultural Journal 42:5375.Google Scholar
WINFREE, R., WILLIAMS, N. M., DUSHOFF, J. & KREMEN, C. 2007. Native bees provide insurance against ongoing honey bee losses. Ecology Letters 10:11051113.Google Scholar