Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T02:53:21.308Z Has data issue: false hasContentIssue false

Effects of experimental fires on litter decomposition in a seasonally dry Amazonian forest

Published online by Cambridge University Press:  08 October 2009

Juliana M. Silveira*
Affiliation:
Universidade Federal de Lavras-UFLA, Minas Gerais, 37200-000, Brazil Museu Paraense Emilio Goeldi-MPEG, Belém, Pará, 66017-970, Brazil
Jos Barlow
Affiliation:
Museu Paraense Emilio Goeldi-MPEG, Belém, Pará, 66017-970, Brazil Lancaster University, Lancaster Environment Centre, LA1 4YQ, UK
Alex V. Krusche
Affiliation:
Centro de Energia Nuclear na Agricultura – CENA, São Paulo, 13400-970, Brazil
Kate H. Orwin
Affiliation:
Lancaster University, Lancaster Environment Centre, LA1 4YQ, UK
Jennifer K. Balch
Affiliation:
Woods Hole Research Center, Falmouth, USA Yale University, School of Forestry and Environmental Studies, New Haven, USA
Paulo Moutinho
Affiliation:
Instituto de Pesquisa Ambiental da Amazônia – IPAM, 71503-505 Brasília, Brazil
*
1Corresponding author. Email: [email protected]

Abstract:

Litter decomposition is a fundamental process for nutrient cycling but we have a limited understanding of this process in disturbed tropical forests. We studied litter decomposition over a 10-mo period in a seasonally dry Amazon forest in Mato Grosso, Brazil. The study plots (50 ha each) included unburned forest (UF), once-burned (BF1) and forest burned annually for 3 y (BF3). We measured understorey density, litter depth, canopy openness, temperature and relative humidity in the plots. Decomposition experiments took place using 720 litterbags filled with approximately 10 g of natural abscised oven-dried leaves. To test the effects of fire on soil meso- and macrofauna, the litterbags had either a fine (2 mm) or coarse (with 1-cm holes in side) mesh size. Litterbags were collected and reweighed 2, 4, 6 and 8 mo after being placed on the forest floor. All forest structure variables were significantly different across plots: BF3 was hotter, less humid, had the highest degree of canopy openness, lowest understorey density and the shallowest litter depth. Litter decomposition (mass loss) was similar in the once-burned and unburned plots, but declined more slowly in BF3. In addition, decomposition was slower in fine-mesh litterbags than coarse-mesh litterbags in BF3, but there was no difference between mesh sizes in BF1 and UF. It is likely that changes in forest structure and microclimate explain the lower decomposition rates in BF3. These results show the importance of recurrent fires, but suggest that single understorey fires may not have long-term negative effects on some ecological processes in seasonally dry Amazonian forests.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ABER, J. D. & MELILLO, J. M. 1991. Terrestrial ecosystems. Saunders College Publishing, Philadelphia. 436 pp.Google Scholar
ALENCAR, A., NEPSTAD, D. & DIAZ, M. C. V. 2006. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interactions 10:116.CrossRefGoogle Scholar
ANDERSON, J. M., PROCTOR, J. & VALLACK, H. W. 1983. Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak: III. Decomposition processes and nutrient losses from leaf litter. Journal of Ecology 71:503527.CrossRefGoogle Scholar
BALCH, J. K., NEPSTAD, D., BRANDO, P. M., CURAN, L. M., PORTELA, O. F., DE CARVALHO, O. & LEFEBVRE, P. 2008. A negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology 14:112.CrossRefGoogle Scholar
BARLOW, J. & PERES, C. A. 2004. Ecological responses to El Niño-induced surface fires in central Amazonia: management implications for flammable tropical forests. Philosophical Transactions of the Royal Society of London B 359:367380.CrossRefGoogle ScholarPubMed
BARLOW, J., GARDNER, T. A., FERREIRA, L. V. & PERES, C. A. 2007. Litter fall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon. Forest Ecology and Management 247:9197.CrossRefGoogle Scholar
BRADFORD, M. A., TODORFF, G. M., EGGERS, T., JONES, T. H. & NEWINGTON, J. E. 2002. Microbiota, fauna and mesh size interactions in litter decomposition. Oikos 99:317323.CrossRefGoogle Scholar
BURGHOUTS, T., EARNSTING, G., KORTHLS, G. & DE VRIES, T. 1992. Litterfall, leaf litter decomposition and litter invertebrates in primary and selectively logged dipterocarp forest in Sabah, Malaysia. Philosophical Transactions of the Royal Society of London 335:407416.Google Scholar
CHACÓN, N. & DEZZEO, N. 2007. Litter decomposition in primary forest and adjacent fire-disturbed forests in the Gran Sabana, southern Venezuela. Biology and Fertility of Soils 43:815821.CrossRefGoogle Scholar
COCHRANE, M. & SCHULZE, M. D. 1999. Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31:216.Google Scholar
COÛTEAUX, M. M., BOTTNER, P. & BERG, B. 1995. Litter decomposition, climate and litter quality. Tree 10:6366.Google Scholar
CRAWLEY, M. J. 2007. The R book. John Wiley & Sons Ltd, Chichester. 941 pp.CrossRefGoogle Scholar
DENSLOW, J. S. & HARTSHORN, G. S. 1994. Treefall gap environments and forest dynamic processes. Pp. 120127 in McDade, L. A., Bawa, K., Hespenheide, H. & Hartshorn, G. S. (eds). La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago.Google Scholar
DICKINSON, C. H. & PUGH, G. J. F. 1974. Biology of plant litter decomposition. Academic Press, London. 175 pp.Google Scholar
DIDHAM, R. K. 1998. Altered leaf-litter decomposition rates in tropical forests fragments. Oecologia 116:397406.CrossRefGoogle ScholarPubMed
EWEL, J. J. 1976. Litter fall and leaf decomposition in a tropical forest succession in eastern Guatemala. Journal of Ecology 64:293308.CrossRefGoogle Scholar
FITTKAU, E. J. & KLINGE, H. 1973. On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica 5:214.CrossRefGoogle Scholar
HENEGHAN, L., COLEMAN, D. C., ZOU, X., CROSSLEY, D. A. J. & HAINES, B. L. 1999. Soil microarthropod contributions to decomposition dynamics: tropical temperate comparisons of a single substrate. Ecology 80:18731882.Google Scholar
HOLDSWORTH, A. R. & UHL, C. 1997. Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecological Applications 7:713725.CrossRefGoogle Scholar
IVANAUSKAS, N. M., MONTEIRO, R. & RODRIGUES, R. R. 2003. Alterations following a fire in a forest community of Alto Xingu. Forest Ecology and Management 184:239250.CrossRefGoogle Scholar
KUMAR, B. M. & DEEPU, J. K. 1992. Litter production and decomposition dynamics in moist deciduous forests of the West Ghats of Peninsular India. Forest Ecology and Management 50:181201.CrossRefGoogle Scholar
LAVELLE, P., BLANCHART, E., MARTIN, A., MARTIN, S. & SPAIN, A. 1993. A hierarchical model for decomposition in terrestrial ecosystems: application to soils of humid tropics. Biotropica 25:130150.CrossRefGoogle Scholar
LORANGER, G., PONGE, J.-F., IMBERT, B. & LAVELLE, P. 2002. Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality. Biology and Fertility of Soils 35:247252.CrossRefGoogle Scholar
MESQUITA, R. C. G., WORKMAN, S. W. & NEELY, C. L. 1998. Slow decomposition in a Cecropia-dominated secondary forest of Central Amazonia. Soil Biology and Biochemistry 30:167175.CrossRefGoogle Scholar
NEPSTAD, D., VERÍSSIMO, A., ALENCAR, A., NOBRE, C., LIMA, E., LEFEBVRE, P., SCHLESINGER, P., POTTER, C., MOUTINHO, P., MENDOZA, E., COCHRANE, M. & BROOKS, V. 1999. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 38:505508.CrossRefGoogle Scholar
NEPSTAD, D. C., MOUTINHO, P., DIAS-FILHO, M. B., DAVIDSON, E., CARDINOT, G., MARKEWITZ, D., FIGUEIREDO, R., VIANNA, N., CHAMBERS, J., RAI, D., GUERREIROS, J. B., LEFEBVRE, P., STERNBERG, L., MOREIRA, M., BARROS, L., ISHIDA, F. Y., TOHLVER, I., BELK, E., KALIF, K. & SCHALBE, K. 2002. The effects of partial throughfall exclusion on canopy processes, aboveground production and biogeochemistry of an Amazon forest. Journal of Geophysical Research, 107 (D20):8085, doi:10.1029/2001JD000360.Google Scholar
RADAM, BRASIL. 1974. Projeto RADAM BRASIL. DNP/MME, Folha SA 22. Rio de Janeiro. 478 pp.Google Scholar
RUBINSTEIN, A. & VASCONCELOS, H. L. 2005. Leaf-litter decomposition in Amazonian forest fragments. Journal of Tropical Ecology 21:699702.CrossRefGoogle Scholar
SANDERMAN, J. & AMUNDSON, R. 2005. Biogeochemistry of decomposition and detrital processing. Pp. 249316 in Schlesinger, W. H. (ed). Biogeochemistry – treatise on geochemistry, Elsevier, Amsterdam.Google Scholar
SCHLESINGER, W. 1997. The biosphere: biogeochemical cycling on land. Pp. 166223 in Schlesinger, W. (ed). Biogeochemistry: an analysis of global change. (Second edition). Academic Press, San Diego.Google Scholar
SETÄLÄ, H., MARSHALL, V. G. & TROFYMOW, J. A. 1996. Influence of body size of soils fauna on litter decomposition and 15N uptake by poplar in a pot trial. Soil Biology and Biochemistry 28:16611675.CrossRefGoogle Scholar
SILVEIRA, J. M. 2008. Fogo recorrente na serrapilheira: conseqüências para artrópodes, decomposição da matéria orgânica e mineralização de carbono e nitrogênio em uma floresta de transição da Amazônia. Tese de Doutorado. Museu Paraense Emilio Goeldi. 186 pp.Google Scholar
SULKAVA, P. & HUHTA, V. 1998. Habitat patchiness affects decomposition and faunal diversity: a microcosm experiment on forest floor. Oecologia 116:390396.CrossRefGoogle ScholarPubMed
SWIFT, M. J., RUSSELL-SMITH, A. & PERFECT, T. J. 1981. Decomposition and mineral-nutrient dynamics of plant litter in a regeneration bush-fallow in sub-humid, tropical Nigeria. Journal of Ecology 69:981995.CrossRefGoogle Scholar
UHL, C. & KAUFFMAN, J. B. 1990. Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology 71:437449.CrossRefGoogle Scholar
VASCONCELOS, H. L. & LAURANCE, W. F. 2005. Influence of habitat, litter type and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape. Oecologia 144:456462.CrossRefGoogle Scholar
WALDROP, M. P., BALSER, T. C. & FIRESTONE, M. K. 2000. Linking microbial composition to function in a tropical soil. Soil Biology and Biochemistry 32:18371846.CrossRefGoogle Scholar
WARDLE, D. A. 2002. Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton. 392 pp.Google Scholar
XULUC-TOLOSA, F. J., VESTER, H. F. M., RAMÍREZ-MARCIAL, M., CASTELLANOS-ALBORES, J. & LAURANCE, D. 2003. Leaf litter decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche, Mexico. Forest Ecology and Management 174:401412.CrossRefGoogle Scholar