Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T17:48:15.458Z Has data issue: false hasContentIssue false

Do Neotropical peccary species (Tayassuidae) function as ecosystem engineers for anurans?

Published online by Cambridge University Press:  28 May 2010

Harald Beck*
Affiliation:
Towson University, Department of Biological Sciences, 8000 York Road, Towson, MD, 21252, USA
Paporn Thebpanya
Affiliation:
Towson University, Department of Geography and Environmental Planning, 8000 York Road, Towson, MD, 21252, USA
Melissa Filiaggi
Affiliation:
Towson University, Department of Biological Sciences, 8000 York Road, Towson, MD, 21252, USA
*
1Corresponding author. Email: [email protected]

Abstract:

The concept of ecosystem engineering has catalysed novel approaches and models for non-trophic species interactions and ecosystem functions. Ecosystem engineers physically modify abiotic and biotic environments, thereby creating new habitats that can be colonized by a new suite of species. In the Peruvian Amazonas, we tested whether peccaries (Tayassuidae) function as ecosystem engineers by creating and maintaining wallows. Such wallows could be critical aquatic habitats and breeding sites for anuran species during dry seasons. We compared hydroperiods of 21 peccary wallows and 13 naturally formed ponds across three dry seasons and found that wallows had a consistently higher mean water surface area than ponds. We also examined the pH, dissolved oxygen and temperature, and found no significant differences in these parameters between water bodies. Wallows had a significantly higher density of tadpoles, metamorphs and adult anurans, as well as higher β-diversity and species richness than ponds. This study not only provides the first systematic evidence of the ecosystem engineering processes of peccaries, but also reveals the positive consequences of such for anuran species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BECK, H. 2005. Seed predation and dispersal by peccaries throughout the Neotropics and its consequences: a review and synthesis. Pp. 77115 in Forget, P. M., Lambert, J. E., Hulme, P. E. & Vander Wall, S. B. (eds.). Seed fate: predation, dispersal and seedling establishment. CABI Publishing, Wallingford.CrossRefGoogle Scholar
BECK, H. 2006. A review of peccary-palm interactions and their ecological ramifications across the Neotropics. Journal of Mammalogy 87:519530.CrossRefGoogle Scholar
BECK, H. 2008. Tropical ecology. Pp. 36163624 in Jorgensen, S. E. & Fath, B. (eds.). Encyclopedia of ecology. Elsevier, Oxford.CrossRefGoogle Scholar
BRAGG, A. N. 1940. Observations on the ecology and natural history of anura. I. Habitats, habitat, and breeding of Bufo cognatus Say. American Naturalist 74:322349.CrossRefGoogle Scholar
BUCHMAN, N., CUDDINGTON, K. J. & LAMBRINOS, J. G. 2007. A historical perspective on ecosystem engineering. Pp. 2546 in Cuddington, K. J., Byers, J. E., Wilson, W. G. & Hastings, A. (eds.). Ecosystem engineers: plants to protists. Academic Press, Burlington.CrossRefGoogle Scholar
BUSBY, W. H. & BRECHEISEN, W. R. 1997. Chorusing phenology and habitat associations of the crawfish frog, Rana areolata (Anura: Ranidae), in Kansas. Southwestern Naturalist 42:210217.Google Scholar
BYERS, J. E., CUDDINGTON, K., JONES, C. G., TALLEY, T. S., HASTINGS, A., LAMBRINOS, J. G., CROOKS, J. A. & WILSON, W. G. 2006. Using ecosystem engineers to restore ecological systems. Trends in Ecology and Evolution 21:493500.CrossRefGoogle ScholarPubMed
CAMERON, M. 2008. Do peccaries function as ecosystem engineers? Master's thesis, Towson University, Towson.Google Scholar
CARRILLA, E., SANZ, J. C. & FULLER, T. K. 2002. Movements and activities of white-lipped peccaries in Corcovado National Park, Costa Rica. Biological Conservation 108:317324.CrossRefGoogle Scholar
CHAO, A. 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783791.CrossRefGoogle ScholarPubMed
CHAPMAN, F. M. 1936. White-lipped peccary. Natural History 38:408413.Google Scholar
COLWELL, R. K. & CODDINGTON, J. A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of Royal Society B: Biological Sciences 345:101118.Google ScholarPubMed
COPPEDGE, B. R., FUHLENDORF, S. D., ENGLE, D. M. & CARTER, B. J. 1999. Grassland soil depressions: relict Bison wallows or inherent landscape heterogeneity? American Midland Naturalist 142:382392.CrossRefGoogle Scholar
CRAMER, M. J. & WILLIG, M. R. 2004. Habitat heterogeneity, species diversity and null models. Oikos 108:209218.CrossRefGoogle Scholar
CROOKS, J. A. 2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153166.CrossRefGoogle Scholar
CUDDINGTON, K., BYERS, J., WILSON, W. & HASTINGS, A. 2007. Ecosystem engineers: plants to protists. Academic Press, Burlington. 432 pp.Google Scholar
CUDDINGTON, K., WILSON, W. G. & HASTINGS, A. 2009. Ecosystem engineers: feedback and population dynamics. American Naturalist 174:488498.CrossRefGoogle Scholar
DUELLMAN, W. E. 2005. Cusco Amazónico, the lives of amphibians and reptiles in an Amazonian rainforest. Cornell University Press, Ithaca. 472 pp.Google Scholar
DUELLMAN, W. E. & TRUEB, L. 1994. Biology of amphibians. Johns Hopkins University Press, Baltimore. 670 pp.CrossRefGoogle Scholar
GASCON, C. 1991. Population- and community-level analyses for species occurrences of Central Amazonian rainforest tadpoles. Ecology 72:17311746.CrossRefGoogle Scholar
GASCON, C. 1992. Aquatic predators and tadpole prey in Central Amazonia: field data and experimental manipulations. Ecology 73:971980.CrossRefGoogle Scholar
GASCON, C. 1995. Tropical larval anuran fitness in the absence of direct effects of predation and competition. Ecology 76:22222229.CrossRefGoogle Scholar
GASCON, C. & ZIMMERMAN, B. L. 1998. Of frogs and ponds and peccaries. Natural History 7:4345.Google Scholar
GERLANC, N. M. & KAUFMAN, G. A. 2003. Use of bison wallows by anurans on Konza Prairie. American Midland Naturalist 150:158168.CrossRefGoogle Scholar
GOTELLI, N. J. & COLWELL, R. K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4:379391.CrossRefGoogle Scholar
HAMZA, M. A. & ANDERSON, W. K. 2005. Soil compaction in cropping systems a review of the nature, causes and possible solutions. Soil Tillage Research 82:121145.CrossRefGoogle Scholar
HASTINGS, A., BYERS, J. E., CROOKS, J. A., CUDDINGTON, K., JONES, C. G., LAMBRINOS, J. G., TALLEY, T. S. & WILSON, W. G. 2007. Ecosystem engineering in space and time. Ecology Letters 10:153164.CrossRefGoogle ScholarPubMed
IMHOFF, S., SILVIA, A. P. & TORMENA, C. A. 2000. Applications of the resistance curve in the control of the physical quality of soils under grass. Pesquisa Agropecuaria Brasileira 35:14931500.CrossRefGoogle Scholar
JONES, C. G. & GUTIÉRREZ, J. L. 2007. On the purpose, meaning, and usage of the physical ecosystem engineering concept. Pp. 324 in Cuddington, K., Byers, J. E., Wilson, W. G. & Hastings, A. (eds.). Ecosystem engineers: plants to protists. Academic Press, Burlington.CrossRefGoogle Scholar
JONES, C. G., LAWTON, J. H. & SHACHAKM, M. 1994. Organisms as ecosystem engineers. Oikos 69:373386.CrossRefGoogle Scholar
JONES, C. G., LAWTON, J. H. & SHACHAKM, M. 1997. Positive and negative effects of organisms as ecosystem engineers. Ecology 78:19461957.CrossRefGoogle Scholar
KOZLOWSKI, T. T. 1999. Soil compaction and growth of woody plants. Scandinavian Journal of Forest Research 14:596619.CrossRefGoogle Scholar
KREBS, C. J. 2008. Ecology: the experimental analysis of distribution and abundance. (Sixth edition). Benjamin Cummings, San Francisco. 688 pp.Google Scholar
LAURANCE, W. F., LOVEJOY, T. E., VASCONCELOS, H. L., BRUNA, E. M., DIDHAM, R. K., STOUFFER, P. C., GASCON, C., BIERREGAARD, R. O., LAURANCE, S. G. & SAMPAIO, E. 2002. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology 16:605618.CrossRefGoogle Scholar
MAGURRAN, A. E. 2003. Measuring biological diversity. Blackwell Publishing, Oxford. 260 pp.Google Scholar
MARSH, D. M., FEGRAUS, E. H. & HARRISON, S. 1999. Effects of breeding pond isolation on the spatial and temporal dynamics of pond use by Tungara frogs, Physalaemus pustulosus. Journal of Animal Ecology 68:804814.CrossRefGoogle Scholar
McHUGH, T. 1972. The time of the Buffalo. Alfred A. Knopf, New York. 339 pp.Google Scholar
MURPHY, T. 2003. Does reproductive site choice in a Neotropical frog mirror variable risks facing offspring? Ecological Monographs 73:4567.CrossRefGoogle Scholar
NAIMAN, R. J., JOHNSTON, C. A. & KELLY, J. C. 1988. Alteration of North American streams by beaver. Bioscience 38:753762.CrossRefGoogle Scholar
POLLY, H. W. & COLLINS, S. L. 1984. Relationships between vegetation and environment in buffalo wallows. American Midland Naturalist 112:178186.CrossRefGoogle Scholar
PRINGLE, R. M. 2008. Elephants as agents of habitat creation for small vertebrates at the patch scale. Ecology 89:2633.CrossRefGoogle ScholarPubMed
SCHOLZ, A. & HENNINGS, H. H. 1995. Bearing capacity for grazing in connection with the rewetting of fens. Zeitschrift für Kultur und Landentwicklung 36:162164.Google Scholar
SILVIA, V. R., REINERT, D. J. & REICHERT, J. M. 2000. Soil density, chemical attributes and maize root distribution as affected by grazing and soil management. Revista Brasileira de Ciência do Solo 24:191199.Google Scholar
SIMBERLOFF, D. 1992. Do species-area curves predict extinction in fragmented forest? Pp. 7586 in Whitmore, T. C. & Sayer, J. A. (eds.). Tropical deforestation and species extinction. Chapman and Hall, London.Google Scholar
SMITH, R. L. & SMITH, T. M. 2002. Elements of ecology. (Fifth edition). Benjamin Cummings, UK. 682 pp.Google Scholar
SOWLS, L. K. 1997. Javelinas and other peccaries. (Second edition). Texas A & M University Press, College Station. 352 pp.Google Scholar
STEVENS, C. E., PASZKOWSKI, C. A. & FOOTE, L. A. 2007. Beaver (Castor canadensis) as a surrogate species for the conserving anuran amphibians on boreal streams in Alberta, Canada. Biological Conservation 134:113.CrossRefGoogle Scholar
TABER, A., CHALUKIAN, S. C., ALTRICHTER, M., MINKOWSKI, K., LIZÁRRAGA, L., SANDERSON, E., RUMIZ, D., VENTINCINQUE, E., MORAES, E. A., ANGELO, C., ANTÚNEZ, M., AYALA, G., BECK, H., BODMER, R., BOHER, S. B., CARTES, J. L., BUSTOS, S., EATON, D., EMMONS, L., ESTRADA, N., FLAMARION DE OLIVEIRA, L., FRAGOSO, J., GARCIA, R., GOMEZ, C., GÓMEZ, H., KEUROGHLIAN, K., LEDESMA, L., LIZCANO, D., LOZANO, C., MONTENEGRO, O., NERIS, N., NOSS, A., VIEIRA, A. P., PAVIOLO, A., PEROVIC, P., PORTILLO, H., RADACHOWSKY, J., REYNA-HURTADO, R., RODRIGUEZ ORTIZ, J., SALAS, L., DUENAS, A. S., SARRIA PEREA, J. A., SCHIAFFINO, K., THOISY, B., TOBLER, M., UTRERAS, V., VARELA, D., WALLACE, R. B., & ZAPATA RÍOS, G. 2008. El destino de los arquitectos de los bosques Neotropicales: evaluación de la distribución y el estado de conservación de los pecaríes labiados y los tapires de tierras bajas. IUCN, Wildlife Trust, New York. 181 pp.Google Scholar
TERASHIMA, E., FUJII, E. & MISHIMA, K. 1999. Experimental studies on the effects of trampling on the root system of seedlings of Zelkova serrata Makino. Technical Bulletin of Faculty of Horticulture, Chiba University 53:8592.Google Scholar
TERBORGH, J. 1990. An overview of research station at Cocha Cashu Biological Station. Pp. 4859 in Gentry, A. H. (ed.). Four Neotropical rainforests. Yale University Press, Connecticut.Google Scholar
UNO, G. E. 1989. Dynamics of plants in buffalo wallows: ephemeral pools in the Great Plains. Pp. 431444 in Bock, J. H. & Linhart, Y. B. (eds.). The evolutionary ecology of plants. Westview Press, Boulder.Google Scholar
WRIGHT, J. P. & JONES, C. G. 2004. Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity. Ecology 85:20712081.CrossRefGoogle Scholar
WRIGHT, J. P., JONES, C. G. & FLECKER, A. S. 2000. An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 132:96101.CrossRefGoogle Scholar
ZIMMERMAN, B. L. & BIERREGAARD, R. O. 1986. Relevance of the equilibrium theory of island biogeography and species-area relations to conservation with a case from Amazonia. Journal of Biogeography 13:133143.CrossRefGoogle Scholar
ZIMMERMAN, B. L. & SIMBERLOFF, D. 1996. A historic interpretation of habitat use by frogs in a Central Amazonian Forest. Journal of Biogeography 23:2746.CrossRefGoogle Scholar