Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T12:37:50.332Z Has data issue: false hasContentIssue false

Do Melastomataceae perform CAM photosynthesis? A survey of neotropical species using carbon isotope ratios

Published online by Cambridge University Press:  04 April 2013

Gilberto Ocampo*
Affiliation:
California Academy of Sciences, Department of Botany, 55 Music Concourse Drive, Golden Gate Park, San Francisco, California 94118, USA
Frank Almeda
Affiliation:
California Academy of Sciences, Department of Botany, 55 Music Concourse Drive, Golden Gate Park, San Francisco, California 94118, USA
*
1Corresponding author. Email: [email protected].

Abstract:

Leaf anatomical and carbon isotope ratio (δ13C) data from previous studies suggest that the species of the Melastomataceae perform C3 photosynthesis and that leaf anatomical features of some epiphytic taxa resemble the characteristics found in CAM plants. The δ13C values of 67 species of neotropical Melastomataceae (including epiphytes) were obtained from herbarium material deposited at the California Academy of Sciences for assessing the presence of the CAM pathway. The δ13C values obtained from leaves (−23.4‰ to −34.5‰) were congruent with C3 photosynthesis (< −20‰), and the δ13C data from terrestrial (56 samples) and epiphytic species (11 samples) were not statistically different. Our results suggest that CAM photosynthesis is not found in neotropical Melastomataceae. The leaf anatomical features found in some species of Melastomataceae represent adaptations to cope with water stress and are not necessarily correlated with CAM photosynthesis. Photosynthetic pathways can be assessed with the use of leaf anatomical and δ13C data, but further biochemical assays are warranted to corroborate the absence of the CAM pathway in the Melastomataceae.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BRITO-RAMOS, A. B., ALMEIDA-CORTEZ, J. S. & ALVES, M. 2010. Caracterização morfológica de minas foliares em espécies de Melastomataceae de Mata Atlântica, PE. Acta Botanica Brasilica 24:599604.CrossRefGoogle Scholar
CARLQUIST, S. 1994. Anatomy of tropical alpine plants. Pp. 111128 in Rundel, P. W., Smith, A. P. & Meinzer, F. C. (eds.). Tropical alpine environments, plant form and function. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
CUSHMAN, J. C. 2001. Crassulacean acid metabolism, a plastic photosynthetic adaptation to arid environments. Plant Physiology 127:14391448.CrossRefGoogle ScholarPubMed
CUTLER, D. F., BOTHA, T. & STEVENSON, D. W. 2008. Plant anatomy: an applied approach. Blackwell Publishing, Malden. 302 pp.Google Scholar
EDWARDS, E. J. & OGBURN, R. M. 2012. Angiosperm responses to a low-CO2 world: CAM and C4 photosynthesis as parallel evolutionary trajectories. International Journal of Plant Sciences 173:724733.CrossRefGoogle Scholar
EHLERINGER, J. R. & MONSON, R. K. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology and Systematics 24:411439.CrossRefGoogle Scholar
ELY, F., TORRES, F. & GAVIRIA, J. 2005. Relación entre la morfoanatomía foliar de tres especies de Miconia (Melastomataceae) con su hábitat y distribución altitudinal en el Parque Nacional Sierra Nevada de Mérida, Venezuela. Acta Botanica Venezuelica 28:275300.Google Scholar
FAHN, A. & CUTLER, D. F. 1992. Xerophytes. Encyclopedia of plant anatomy, vol. 13. Gebruder Borntraeger, Berlin. 176 pp.Google Scholar
GRÖGER, A. & RENNER, S. S. 1997. Leaf anatomy and ecology of the Guayana endemics Acanthella sprucei and A. pulchra (Melastomataceae). BioLlania, edición especial 6:369374.Google Scholar
LÜTTGE, U., HARIDASAN, M., FERNANDES, G. W., DE MATTOS, E. A., TRIMBORN, P., FRANCO, A. C., CALDAS, L. S. & ZIEGLER, H. 1998. Photosynthesis of mistletoes in relation to their hosts at various sites in tropical Brazil. Trees 12:167174.CrossRefGoogle Scholar
MARQUES, A. R., GARCIA, Q. S., REZENDE, J. L. P. & FERNANDES, G. W. 2000. Variations in leaf characteristics of two species of Miconia in the Brazilian cerrado under different light intensities. Tropical Ecology 41:4760.Google Scholar
MAUSETH, J. D. 1988. Plant anatomy. Benjamin/Cummings, Menlo Park. 560 pp.Google Scholar
MENTIK, H. & BAAS, P. 1992. Leaf anatomy of the Melastomataceae, Memecylaceae, and Crypteroniaceae. Blumea 37:189225.Google Scholar
NELSON, E. A. & SAGE, R. F. 2008. Functional constraints of CAM leaf anatomy: tight cell packing is associated with increased CAM function across a gradient of CAM expression. Journal of Experimental Botany 59:18411850.CrossRefGoogle ScholarPubMed
NELSON, E. A., SAGE, T. L. & SAGE, R. F. 2005. Functional leaf anatomy of plants with Crassulacean acid metabolism. Functional Plant Biology 32:409419.CrossRefGoogle ScholarPubMed
O'LEARY, M. H. 1988. Carbon isotopes in photosynthesis. BioScience 38:328336.CrossRefGoogle Scholar
PUTZ, F. E. & HOLBROOK, N. M. 1986. Notes on the natural history of hemiepiphytes. Selbyana 9:6169.Google Scholar
REGINATO, M., BOEGER, M. R. T. & GOLDENBERG, R. 2009. Comparative anatomy of the vegetative organs in Pleiochiton A. Gray (Melastomataceae), with emphasis on adaptations to epiphytism. Flora 204:782790.CrossRefGoogle Scholar
RENNER, S. S. 1986. The neotropical epiphytic Melastomataceae: phytogeographic patterns, fruit types, and floral biology. Selbyana 9:104111.Google Scholar
RENNER, S. S. 1993. Phylogeny and classification of the Melastomataceae and Memecylaceae. Nordic Journal of Botany 13:519540.CrossRefGoogle Scholar
SAGE, R. F., SAGE, T. L., PEARCY, R. W. & BORSCH, T. 2007. The taxonomic distribution of C4 photosynthesis in Amaranthaceae sensu stricto. American Journal of Botany 94:19922003.CrossRefGoogle ScholarPubMed
SAGE, R. F., CHRISTIN, P. A. & EDWARDS, E. J. 2011. The C4 plant lineages of planet Earth. Journal of Experimental Botany 62:31553169.CrossRefGoogle ScholarPubMed
SAYED, O. H. 2001. Crassulacean acid metabolism 1975–2000, a check list. Photosynthetica 39:339352.CrossRefGoogle Scholar
SOMAVILLA, N. S. & GRACIANO-RIBEIRO, D. 2011. Análise comparativa da anatomia foliar de Melastomataceae em ambiente de vereda e cerrado sensu stricto. Acta Botanica Brasilica 25:764775.CrossRefGoogle Scholar
SOUZA, R. C. O. S. & MARQUETE, O. 2000. Miconia tristis Spring e Miconia doriana Cogn. (Melastomataceae): anatomia do eixo vegetativo e folhas. Rodriguésia 51:133142.CrossRefGoogle Scholar
WINTER, K. & HOLTUM, J. A. M. 2002. How closely do the δ13C values of Crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? Plant Physiology 129:18431851.CrossRefGoogle ScholarPubMed