Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T03:16:11.397Z Has data issue: false hasContentIssue false

Distribution and effects on tree growth of lianas and woody hemiepiphytes in a Costa Rican tropical wet forest

Published online by Cambridge University Press:  10 July 2009

David B. Clark
Affiliation:
Organization for Tropical Studies, Apartado 676, 2050 San Pedro, Costa Rica
Deborah A. Clark
Affiliation:
Organization for Tropical Studies, Apartado 676, 2050 San Pedro, Costa Rica

Abstract

We evaluated occurrence and abundance of lianas and woody hemiepiphytes on canopy and emergent tree species in primary tropical wet forest at the La Selva Biological Station, Costa Rica. Two pioneers, Cecropia obtusifolia and C. insignis, lacked both lianas and hemiepiphytes. The seven non-pioneer species differed significantly in their loads of lianas and hemiepiphytes. For all non-pioneer species, two measures of liana and hemiepiphyte loads (the percentage of the crown occupied and the combined basal area of descending hemiepiphyte and liana roots and stems) increased significantly with tree diameter. In all non-pioneer species, most trees ∵ 70 cm diameter (50–97%) were colonized. Lianas occupied more trees and had a smaller mean host diameter than did hemiepiphytes; however, basal area of descending roots or stems was equivalent for the two life forms in occupied trees. We used partial correlations controlling for tree diameter to evaluate the relationship between annual tree diameter growth and loads of hemiepiphytes and lianas for six non-pioneer species. Five of the six species showed a significant negative correlation between loads and diameter growth. Existing published data show that the high incidence of lianas and hemiepiphytes at La Selva is paralleled in most other Neotropical wet forests.

Resumen

Evaluamos la presencia y abundancia de lianas y hemiepífitas lenosas en especies de árboles del dosel en el bosque muy húmedo tropical de la Estación Biológica La Selva, Costa Rica. Dos especies pioneras, Cecropia obtusifolia y C. insignis, no presentaron lianas o hemiepífitas. Las otras siete especies no-pioneras mostraron diferencias significativas en la cantidad de lianas y hemiepífitas. Para las especies no-pioneras, dos índices de la cantidad total de lianas y hemiepífitas (el porcentaje de la copa ocupado, y el área basal de todas las lianas y hemiepífitas combinadas) aumentaron significativamente de acuerdo con el diámetro del árbol. Para estas, la mayoría de los individuos >70 cm en diámetro (50–97%) tuvieron lianas o hemiepífitas lenosas. Las lianas occuparon más individuos que las hemiepífitas, y a la vez sus hospederos fueron en promedio de menor diámetro. No obstante, las áreas basales de las raíces de las hemiepífitas y de los tallos de las lianas que llegaban al suelo, fueron equivalentes entre estas dos clases de plantas. Usamos correlatión parcial, controlando el diámetro de árbol, para evaluar la relación entre crecimiento anual en diámetro de los árboles y la cantidad de lianas y hemiepífitas. En cinco de las seis especies examinadas hallamos una relación significativa y negativa entre el crecimiento y la cantidad total de lianas y hemiepífitas. Los datos publicados indican que la alta frecuencia de lianas y hemiepífitas encontrada en La Selva es similar a la mayoría de los bosques húmedos neotropicales.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Black, H. L. & Harper, K. T. 1979. The adaptive value of buttresses to tropical trees: additional hypotheses. Biotropica 11:240.CrossRefGoogle Scholar
Boom, B. M. & Mori, S. A. 1982. Falsification of two hypotheses on liana exclusion from tropical trees possessing buttresses and smooth bark. Bulletin of the Torrey Botanical Club 109:447450.CrossRefGoogle Scholar
Brokaw, N. V. L. 1987. Gap-phase regeneration of three pioneer tree species in a tropical forest. Journal of Ecology 75:919.CrossRefGoogle Scholar
Caballe, G. 1977. Multiplication vegetative en forêt dense du Gabon de la liana Entada scelerata (Mimosoideae). Adansonia 17:215220.Google Scholar
Clark, D. A. & Clark, D. B. 1987a. Análisis de la regeneratión de árboles del dosel en bosque muy humedo tropical: aspectos teóricos y prácticos. Revista de Biología Tropical 35(Suppl.):4154.Google Scholar
Clark, D. B. & Clark, D. A. 1987b. Population ecology and microhabitat distribution of Dipteryx panamensis, a neotropical rain forest emergent tree. Biotropica 19:236244.CrossRefGoogle Scholar
Croat, T. B. 1978. Flora of Barro Colorado Island. Stanford University Press, Stanford.Google Scholar
Emmons, L. H. & Gentry, A. H. 1983. Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates. American Naturalist 121:513524.CrossRefGoogle Scholar
Gentry, A. 1985. An ecotaxonomic survey of Panamanian lianas. Pp. 2942 in D'Arcy, W. G. & Correa, M. D. (eds). The botany and natural history of Panama. Missouri Botanical Garden, St Louis, Missouri, USA.Google Scholar
Gentry, A. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75:134.CrossRefGoogle Scholar
Hartshorn, G. S. 1983. Plants. Pp. 118157 in Janzen, D. H. (ed.). Costa Rican natural history. University of Chicago Press, Chicago, Illinois, USA.Google Scholar
Janzen, D. H. 1969. Allelopathy by myrmecophytes: the ant Azteca as an allelopathic agent of Cecropia. Ecology 50:147153.CrossRefGoogle Scholar
Putz, F. E. 1980. Lianas vs. trees. Biotropica 12:224225.CrossRefGoogle Scholar
Putz, F. E. 1983. Liana biomass and leaf area of a “tierra firme” forest in the Rio Negro Basin, Venezuela. Biotropica 15:185189.CrossRefGoogle Scholar
Putz, F. E. 1984a. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:17131724.CrossRefGoogle Scholar
Putz, F. E. 1984b. How trees avoid and shed lianas. Biotropica 16:1923.CrossRefGoogle Scholar
Putz, F. E. & Chai, P. 1987. Ecological studies of lianas in Lambir National Park, Sarawak, Malaysia. Journal of Ecology 75:523531.CrossRefGoogle Scholar
Putz, F. E. & Holbrook, N. M. 1986. Notes on the natural history of hemiepiphytes. Selbyana 9:6169.Google Scholar
Putz, F. E. & Holbrook, N. M. 1988. Further observations on the dissolution of mutualism between Cecropia and its ants: the Malaysian case. Oikos 53:121125.CrossRefGoogle Scholar
Putz, F. E., Lee, H. S. & Goh, R. 1984. Effects of post–felling silvicultural treatments on woody vines in Sarawak. Malaysian Forester 47:214226.Google Scholar
Schupp, E. W. 1986. Azteca protection of Cecropia: ant occupation benefits juveniles. Oecologia 70: 379385.CrossRefGoogle Scholar
Siegel, S. 1956. Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York, USA.Google Scholar
Sokal, R. R. & Rohlf, F. J. 1981. Biometry (Second Edition). W. H. Freeman Company, San Francisco California, USA.Google Scholar
Stevens, G. C. 1987. Lianas as structural parasites: the Bursera simarouba example. Ecology 68:7781.CrossRefGoogle Scholar
Swaine, M. D. & Whitmore, T. C. 1988. On the definition of ecological species groups in tropical rain forests. Vegetatio 75:8186.CrossRefGoogle Scholar
Todzia, C. 1986. Growth habits, host tree species, and density of hemiepiphytes on Barro Colorado Island, Panama. Biotropica 18:2227.CrossRefGoogle Scholar
Whitmore, T. C. 1975. Tropical rainforests of the Far East. Clarendon Press, Oxford.Google Scholar