Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T16:15:36.508Z Has data issue: false hasContentIssue false

Differential effects of mammalian seed predators on the regeneration of five Papua New Guinean tree species and implications for sapling recruitment

Published online by Cambridge University Press:  01 May 2008

Elizabeth R. Jones*
Affiliation:
Yale School of Forestry and Environmental Studies, 210 Prospect Street, New Haven, CT 06520, USA
Lisa M. Curran
Affiliation:
Yale School of Forestry and Environmental Studies, 210 Prospect Street, New Haven, CT 06520, USA
Debra D. Wright
Affiliation:
PO Box 15, Weikert, PA 17885, USA
Andrew L. Mack
Affiliation:
Powdermill Nature Reserve, 1847 Rte 381, Rector, PA 15677, USA
*
1Corresponding author. Email: [email protected]

Abstract:

Although herbivores may account for a significant source of seed and seedling mortality in many tropical tree species, plant species differ in their response to seed damage. Here we investigate the relative effects of seed predation on the regeneration of five tree species in a mid-elevation Papua New Guinean rain forest. Exclosure treatments and shade-house experiments were monitored from November 2004 to March 2006 to assess the differential effects of seed predation on seed viability and seedling growth. Results indicate that although seed predators attack all five focal species, they influence the seedling populations in two, Cerbera floribunda and Microcos grandiflora, and minimally affect the seedling populations of Terminalia impediens, Pandanus penicillus and Endiandra latifolia in the years measured. Predation and germination frequencies were compared to the abundance of focal species at several life stage classes to explore potential correlations between species-specific seed mortality patterns and life stage distributions. We found that the species-specific influence of mammalian seed predators correlated with abundance distributions in three life stages. Species with high survivorship after seed predator attacks displayed a significant decrease in abundance from the seedling-to-sapling transition, while those species with high seed mortality demonstrated relatively even distributions of seedlings, saplings and adults (> 10 cm dbh). These contrasting patterns suggest that differential seed predation effects on regeneration may play a key role in the recruitment of individuals to the sapling stage.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AUGSPURGER, C. K. & KITAJIMA, K. 1992. Experimental studies of seedling recruitment from contrasting seed distributions. Ecology 73:12701284.CrossRefGoogle Scholar
BEEHLER, B. M., PRATT, T. K. & ZIMMERMAN, D. A. 1986. Birds of New Guinea. Princeton University Press, New Jersey. 295 pp.Google Scholar
CLARK, J. S., MACKLIN, E. & WOOD, L. 1998. Stages and spatial scales of recruitment limitation in Southern Appalachian forests. Ecological Monographs 68:213235.CrossRefGoogle Scholar
CLARK, J. S., BECKAGE, B., CAMILL, P., CLEVELAND, B., HILLE RIS LAMBERS, J., LITCHTER, J., MCLACHLAN, J., MOHAN, J. & WYCKOFF, P. 1999. Interpreting recruitment limitation in forests. American Journal of Botany 86:116.CrossRefGoogle ScholarPubMed
CONNELL, J. H. & GREEN, P. T. 2000. Seedling dynamics over thirty-two years in a tropical rain forest tree. Ecology 81:568584.CrossRefGoogle Scholar
CONNELL, J. H., TRACEY, J. G. & WEBB, L. J. 1984. Compensatory recruitment, growth and mortality as factors maintaining rain forest tree diversity. Ecological Monographs 54:141164.CrossRefGoogle Scholar
CRAWLEY, M. J. 1988. Herbivores and plant population dynamics. Pp. 367391 in Davy, A. J., Hutchings, M. J. & Watkinson, A. R. (eds.). Plant population ecology. Blackwell Scientific Publications, Oxford.Google Scholar
CRAWLEY, M. J. 2001. Seed predators and plant population dynamics. Pp. 167182 in Fenner, M. (ed.). Seeds: the ecology of regeneration in plant communities. (Second edition). CAB International, Wallingford.Google Scholar
CURRAN, L. M. & WEBB, C. O. 2000. Experimental tests of the spatiotemporal scale of seed predation in mast fruiting Dipterocarpaceae. Ecological Monographs 70:129148.CrossRefGoogle Scholar
CURRAN, L. M., CANIAGO, I., PAOLI, G. D., ASTIANTI, D., KUSNETI, M., LEIGHTON, M., NIRARITA, C. E. & HAERUMAN, H. 1999. Impact of El Nino and logging on canopy tree recruitment in Borneo. Science 286:21842188.CrossRefGoogle ScholarPubMed
DEMATTIA, E. A., CURRAN, L. M. & RATHCKE, B. J. 2004. Effects of small rodents and large mammals on Neotropical seeds. Ecology 85:21612170.CrossRefGoogle Scholar
DEMATTIA, E. A., RATHCKE, B. J., CURRAN, L. M., AGUILAR, R. & VARGAS, O. 2006. Effects of small rodent and large mammal exclusion on seedling recruitment in Costa Rica. Biotropica 38:196202.CrossRefGoogle Scholar
DE STEVEN, D. 1994. Tropical tree seedling dynamics- recruitment patterns and their population consequences for three canopy species in Panama. Journal of Tropical Ecology 10:369383.CrossRefGoogle Scholar
FLANNERY, T. 1995. Mammals of New Guinea. Reed Books, New South Wales. 568 pp.Google Scholar
FORGET, P. M., MILLERON, T. & FEER, F. 1998. Patterns in post-dispersal seed removal by neotropical rodents and seed fate in relation to seed size. Pp. 2549 in Newbery, D. M., Prins, H. H. T. & Brown, N. D. (eds.). Dynamics of tropical communities. Cambridge University Press, Cambridge. 644 pp.Google Scholar
GROGAN, J. & GALVAO, J. 2006. Factors limiting post-logging seedling regeneration by big-leaf mahogany (Swietenia macrophylla) in southeastern Amazonia, Brazil, and implications for sustainable management. Biotropica 38:219288.CrossRefGoogle Scholar
HAMMOND, D. S. 1995. Post-dispersal seed and seedling mortality of tropical dry forest trees after shifting agriculture, Chiapas, Mexico. Journal of Tropical Ecology 11:295313.CrossRefGoogle Scholar
HARMS, K. E. & DALLING, J. W. 1997. Damage and herbivory tolerance through resprouting as an advantage of large seed size in tropical trees and lianas. Journal of Tropical Ecology 13:617621.CrossRefGoogle Scholar
HUBBELL, S. P. 1979. Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203:12991309.CrossRefGoogle Scholar
HUBBELL, S. P. 2006. Neutral theory and the evolution of ecological equivalence. Ecology 87:13871398.CrossRefGoogle ScholarPubMed
HULME, P. E. 1996. Herbivory, plant regeneration, and species coexistence. Journal of Ecology 84:609615.CrossRefGoogle Scholar
JANZEN, D. H. 1971. Seed predation by animals. Annual Review of Ecology and Systematics 2:465492.CrossRefGoogle Scholar
LICHSTEIN, J. W., GRAU, H. R. & ARAGÓN, R. 2004. Recruitment limitation in secondary forests dominated by an exotic tree. Journal of Vegetation Science 15:721728.CrossRefGoogle Scholar
MACK, A. L. 1998a. A biological assessment of the Lakekamu Basin, Papua New Guinea. Conservation International, Washington, D.C. 187 pp.Google Scholar
MACK, A. L. 1998b. An advantage of large seed size: tolerating rather than succumbing to seed predators. Biotropica 30:604608.CrossRefGoogle Scholar
MARQUIS, R. J. 2004. Herbivores rule. Science 305:619621.CrossRefGoogle ScholarPubMed
MCGUINNESS, K. A. 1997. Seed predation in a tropical mangrove forest: a test of the dominance-predation model in northern Australia. Journal of Tropical Ecology 13:293302.CrossRefGoogle Scholar
NATHAN, R., & CASAGRANDI, R. 2004. A simple mechanistic model of seed dispersal, predation and plant establishment: Janzen-Connell and beyond. Journal of Ecology 92:733746.CrossRefGoogle Scholar
PAINE, R. T. 1966. Food web complexity and species diversity. The American Naturalist 100:6576.CrossRefGoogle Scholar
REY, P. J. & ALCANTARA, J. M. 2000. Recruitment dynamics of a fleshy-fruited plant (Olea europaea): connecting patterns of seed dispersal to seedling establishment. Journal of Ecology 88:622633.CrossRefGoogle Scholar
RICHARDS, P. W. 2004. The tropical rain forest. (Second edition). Cambridge University Press, Cambridge. 600 pp.Google Scholar
SALVANDE, M., MULET, M. & GONZALEZ, L. A. G. 2006. Ilex canariensis Poir. (Aquifoliaceae) post-dispersal seed predation in the Canary Islands. Plant Ecology 187:143151.CrossRefGoogle Scholar
SÁNCHEZ-CORDERO, V., BRIONES-SALAS, M. & SÁNCHEZ-ROJAS, G. 2006. Multi-species fruit and seed removal in a tropical deciduous forest in Mexico. Canadian Journal of Botany 84:433442.Google Scholar
SCHUPP, E. W. 1990. Annual variation in seedfall, postdispersal predation, and recruitment of a neotropical tree. Ecology 71:504515.CrossRefGoogle Scholar
SILMAN, M. R., TERBORGH, J. W. & KILTIE, R. A. 2003. Population regulation of a dominant rainforest tree by a major seed predator. Ecology 84:431438.CrossRefGoogle Scholar
TERBORGH, J. & WRIGHT, S. J. 1994. Effects of mammalian herbivores on plant recruitment in two neotropical forests. Ecology 75:18291833.CrossRefGoogle Scholar
THEIMER, T. C. 2001. Seed scatterhoarding by white-tailed rats: consequences for seedling recruitment by an Australian rain forest tree. Journal of Tropical Ecology 17:177189.CrossRefGoogle Scholar
VALLEJO-MARIN, M., DOMINGUEZ, C. A. & DIRZO, R. 2006. Simulated seed predation reveals a variety of germination responses of neotropical rain forest species. American Journal of Botany 93:369376.CrossRefGoogle ScholarPubMed
WILLS, C., HARMS, K. E., CONDIT, R., KING, D., THOMPSON, J., HE, F. L., MULLER-LANDAU, H. C., ASHTON, P., LOSOS, E., COMITA, L., HUBBELL, S., LAFRANKIE, J., BUNYAVEJCHEWIN, S., DATTARAJA, H. S., DAVIES, S., ESUFALI, S., FOSTER, R., GUNATILLEKE, N., GUNATILLEKE, S., HALL, P., ITOH, A., JOHN, R., KIRATIPRAYOON, S., DE LAO, S. L., MASSA, M., NATH, C., NOOR, M. N. S., KASSIM, A. R., SUKUMAR, R., SURESH, H. S., SUN, I. F., TAN, S., YAMAKURA, T. & ZIMMERMAN, E. 2006. Nonrandom processes maintain diversity in tropical forests. Science 311:527531.CrossRefGoogle ScholarPubMed
WORM, B. & DUFFY, J. E. 2003. Biodiversity, productivity and stability in real food webs. Trends in Ecology and Evolution 18:628632.CrossRefGoogle Scholar
WORTHY, F. R., LAW, R. & HULME, P. E. 2006. Modelling the quantitative effects of pre- and post-dispersal seed predation in Pinus sylvestris L. Journal of Ecology 94:12011213.CrossRefGoogle Scholar
WRIGHT, D. D. 1998. Fruit choice by the Dwarf Cassowary, Casuarius bennetti, over a three-year period in Papua New Guinea. Ph.D. thesis, University of Miami, Coral Gables, Florida, USA.Google Scholar
WRIGHT, D. D. 2005. Diet, keystone resources and altitudinal movement of dwarf cassowaries in relation to fruiting phenology in a Papua New Guinean rainforest. Pp. 204235 in Dew, J. L. & Boubli, J. P. (eds). Tropical fruits and frugivores: the search for strong interactors. Springer, Germany. 260 pp.Google Scholar
WRIGHT, D. D., JESSEN, J. H., BURKE, P. & DE SILVA GARZA, H. G. 1997. Tree and liana enumeration and diversity on a one-hectare plot in Papua New Guinea. Biotropica 29:250260.CrossRefGoogle Scholar
WRIGHT, S. J. 2002. Plant diversity in tropical forests: a review of mechanisms and species coexistence. Oecologia 130:114.CrossRefGoogle ScholarPubMed