Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T19:03:21.909Z Has data issue: false hasContentIssue false

Community assembly of glass frogs (Centrolenidae) in a Neotropical wet forest: a test of the river zonation hypothesis

Published online by Cambridge University Press:  12 March 2018

Nelson Rivera
Affiliation:
Department of Biological Sciences, Siena College, Loudonville, New York 12211, USA Department of Biology, John Carroll University, University Heights, Ohio 44118, USA
Brian Folt*
Affiliation:
Department of Biological Sciences and Auburn University Museum of Natural History, 331 Funchess Hall, Auburn University, Alabama 36849, USA Organization for Tropical Studies, San Pedro, Costa Rica
*
*Corresponding author. Email: [email protected]

Abstract:

The river zonation hypothesis predicts that abiotic and biotic conditions along riparian gradients drive variation in animal communities. Glass frogs are a diverse group of Neotropical anurans that use riparian habitats exclusively for oviposition and larval development, but little is known about how glass frog communities are distributed across riparian gradients. Here, we measured glass frog community assembly across a gradient of riparian habitats from first- to fifth-order streams at La Selva Biological Station, Costa Rica. We performed repeated nocturnal frog calling surveys and built occupancy and N-mixture abundance models to test for varying patterns of species occupancy, community assembly, species richness (α-diversity) and species turnover (ß-diversity). We observed significant differences in patterns of species occupancy and community assembly across a stream-order gradient: occupancy of two species increased with stream order (Teratohyla pulverata, Hyalinobatrachium fleischmanni), one species decreased (Teratohyla spinosa), and one species did not vary (Espadarana prosoblepon). We evaluated four a priori hypotheses describing how α- and ß-diversity of centrolenids are shaped across the riparian gradient; our data were most consistent with a pattern of nested assemblages and increasing species richness along the riparian gradient. Species-specific patterns of occupancy and abundance resulted in assemblage-level differences consistent with theoretical predictions for highly aquatic organisms along riparian gradients.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BASELGA, A. 2013. Multiple site dissimilarity quantifies compositional heterogeneity among several sites, while average pairwise dissimilarity may be misleading. Ecography 36:124128.CrossRefGoogle Scholar
BRIDGES, A. S. & DORCAS, M. E. 2000. Temporal variation in anuran calling behavior: implications for surveys and monitoring programs. Copeia 2000:587592.Google Scholar
BURNHAM, K. P. & ANDERSON, D. R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York. 488 pp.Google Scholar
CHAO, A. 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783791.Google Scholar
COVICH, A. P. 1988. Geographical and historical comparisons of Neotropical streams: biotic diversity and detrital processing in highly variable habitats. Journal of the North American Benthological Society 7:361386.Google Scholar
DARRAS, K., PÜTZ, P., FAHRURROZI, REMBOLD K. & TSCHARNTKE, T. 2016. Measuring sound detection spaces for acoustic animal sampling and monitoring. Biological Conservation 201:2937.Google Scholar
DELIA, J. R. J., RAMÍREZ-BAUTISTA, A. & SUMMERS, K. 2013. Parents adjust care in response to weather conditions and egg dehydration in a Neotropical glassfrog. Behavioral Ecology and Sociobiology 67:557569.Google Scholar
DONNELLY, M. A. 1994. Amphibian diversity and natural history. Pp. 199–209 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds). La Selva: ecology and natural history of a Neotropical rain forest. University of Chicago Press, Chicago.Google Scholar
DORCAS, M. E., PRICE, S. J., WALLS, S. C. & BARICHIVICH, W. J. 2009. Auditory monitoring of anuran populations. Pp. 281–298 in Dodd, C. K. (ed.). Conservation and ecology of amphibians. Oxford University Press, Oxford.Google Scholar
DUFRÊNE, M. & LEGENDRE, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67:345366.Google Scholar
ETEROVICK, P. C. 2003. Distribution of anuran species among montane streams in south-eastern Brazil. Journal of Tropical Ecology 19:219228.Google Scholar
ETEROVICK, P. C. & BARATA, I. M. 2006. Distribution of tadpoles within and among Brazilian streams: the influence of predators, habitat size, and heterogeneity. Herpetologica 62:378388.Google Scholar
FISKE, I. & CHANDLER, R. 2011. unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software 43:123.Google Scholar
GREER, B. & WELLS, K. 1980. Territorial and reproductive behavior of the tropical American frog Centrolenella fleischmanni. Herpetologica 36:318326.Google Scholar
GUAYASAMIN, J. M., CASTROVIEJO-FISHER, S., TRUEB, L., AYARZAGÜENA, J., RADA, M. & VILÀ, C. 2009. Phylogenetic systematics of glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni. Zootaxa 2100:197.CrossRefGoogle Scholar
GUYER, C. & DONNELLY, M. A. 2005. Amphibians and reptiles of La Selva, Costa Rica, and the Caribbean slope: a comprehensive guide. University of California Press, Berkeley. 299 pp.Google Scholar
HAYES, M. P. 1991. A study of clutch attendance in the Neotropical frog Centrolenella fleischmanni (Anura: Centrolenidae). Unpublished Ph.D. dissertation, University of Miami, USA. 240 pp.Google Scholar
HEYER, W. R., DONNELLY, M. A., MCDIARMID, R. W., HAYEK, L. C. & FOSTER, M. S. 1994. Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Institution Press, Washington, DC. 364 pp.Google Scholar
HOFFMANN, H. 2010. Cyanosis by methemoglobinemia in tadpoles of Cochranella granulosa (Anura: Centrolenidae). Revista de Biología Tropical 58:14671478.Google Scholar
HYNES, H. B. N. 1971. Zonation of the invertebrate fauna in a West Indian stream. Hydrobiologia 38:18.Google Scholar
INGER, R. F. & VORIS, H. K. 1993. A comparison of amphibian communities through time and from place to place in Bornean forests. Journal of Tropical Ecology 9:409433.Google Scholar
JACOBSON, S. K. 1985. Reproductive behavior and mating success in two species of glass frogs (Centrolenidae). Herpetologica 41:396404.Google Scholar
KELLER, A., RÖDEL, M. O., LINSENMAIR, K. E. & GRAFE, T. U. 2009. The importance of environmental heterogeneity for species diversity and assemblage structure in Bornean stream frogs. Journal of Animal Ecology 78:305314.Google Scholar
KUBICKI, B. 2007. Glass frogs of Costa Rica. Instituto Nacional de Biodiversidad, INBio, Santo Domingo de Heredia, Costa Rica. 281 pp.Google Scholar
MACKENZIE, D. I., NICHOLS, J. D., LACHMAN, G. B., DROEGE, S., ROYLE, A. J. & LANGTIMM, C. A. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:22482255.Google Scholar
MANGOLD, A., TRENKWALDER, K., RINGLER, M., HÖDL, W. & RINGLER, E. 2015. Low reproductive skew despite high male-biased operational sex ratio in a glass frog with paternal care. BMC Evolutionary Biology 15:181.Google Scholar
MAZEROLLE, M. J., BAILEY, L. L., KENDALL, W. L., ROYLE, J. A., CONVERSE, S. J. & NICHOLS, J. D. 2007. Making great leaps forward: accounting for detectability in herpetological field studies. Journal of Herpetology 41:672689.Google Scholar
MCCAFFERY, R. & LIPS, K. 2013. Survival and abundance in males of the glass frog Espadarana (Centrolene) prosoblepon in central Panama. Journal of Herpetology 47:162168.Google Scholar
MCDADE, L. A. & HARTSHORN, G. S. 1994. La Selva Biological Station. Pp. 614 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds). La Selva: ecology and natural history of a Neotropical rain forest. University of Chicago Press, Chicago.Google Scholar
MCDIARMID, R. 1983. Centrolenella fleischmanni (Ranita de Vidrio, Glass Frog). Pp. 389390 in Janzen, D. H. (ed.). Costa Rican natural history. University of Chicago Press, Chicago.Google Scholar
OVASKA, K. & RAND, A. S. 1999. Courtship and reproductive behavior of the frog Eleutherodactylus diastema (Anura: Leptodactylidae) in Gamboa, Panama. Journal of Herpetology 35:4450.Google Scholar
RAMÍREZ, A. & PRINGLE, C. M. 2001. Spatial and temporal patterns of invertebrate drift in streams draining a Neotropical landscape. Freshwater Biology 46:4762.Google Scholar
RICE, W. R. 1989. Analyzing tables of statistical tests. Evolution 43:223225.Google Scholar
RIOS-SOTO, J. A., OSPINA-L, A. M. & VARGAS-SALINAS, F. 2017. The advertisement call and notes on the reproductive ecology of the glassfrog “Centrolenequindianum (Anura: Centrolenidae). South American Journal of Herpetology 12:117227.CrossRefGoogle Scholar
ROYLE, J. A. 2004. N-mixture models for estimating population size from spatially replicated counts. Biometrics 60:108115.Google Scholar
SANFORD, R. L., PAABY, P., LUVALL, J. C. & PHILLIPS, E. 1994. Climate, geomorphology, and aquatic systems. Pp. 1933 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds). La Selva: ecology and natural history of a Neotropical rain forest. University of Chicago Press, Chicago.Google Scholar
SAVAGE, J. M. 2002. The amphibians and reptiles of Costa Rica: a herpetofauna between two continents, between two seas. University of Chicago Press, Chicago. 945 pp.Google Scholar
SMITH, L. L., BARICHIVICH, W. J., STAIGER, J. S., SMITH, K. G. & DODD, C. K. 2006. Detection probabilities and site occupancy estimates for amphibians at Okefenokee National Wildlife Refuge. American Midland Naturalist 155:149161.Google Scholar
STEEN, D. A., MCCLLURE, C. J. W. & GRAHAM, S. P. 2013. Relative influence of weather and season on anuran calling activity. Canadian Journal of Zoology 467:462467.Google Scholar
STRAHLER, A. 1957. Quantitative analysis of watershed geomorphology. American Geophysical Union 38:913920.Google Scholar
VANNOTE, R. L., MINSHALL, W. G., CUMMINS, K. W., SEDELL, J. R. & CUSHING, C. E. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37:130137.Google Scholar
WELLBORN, G. A., SKELLY, D. K. & WERNER, E. E. 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27:337363.Google Scholar