Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T14:18:31.314Z Has data issue: false hasContentIssue false

Colour vision and food selection of Callosciurus finlaysonii (Sciuridae) in tropical seasonal forests

Published online by Cambridge University Press:  29 July 2015

Noriko Tamura*
Affiliation:
Tama Forest Science Garden, Forestry and Forest Products Research Institute, Todori 1833, Hachioji, Tokyo 193–0843, Japan
Yukiko Fujii
Affiliation:
Nature Study and Squirrel Research, Minami, Yokohama, Kanagawa 232-0064, Japan
Phadet Boonkeow
Affiliation:
Department of National Park Wildlife and Plant Conservation, 61 Phahon Yothin Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
Budsabong Kanchanasaka
Affiliation:
Department of National Park Wildlife and Plant Conservation, 61 Phahon Yothin Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
*
1Corresponding author. Email: [email protected]

Abstract:

Finlayson's squirrel is frugivorous and distributed throughout the tropical seasonal forests of South-East Asia. To understand the resource use of tree squirrels in a tropical forest ecosystem, colour vision and fruit selection of Finlayson's squirrel were investigated. Under laboratory conditions, this species possesses dichromatic colour vision; it can discriminate white, yellow, violet, brown and black versus green similar to leaves, but it cannot discriminate orange and red versus green. In addition, squirrels can discriminate pale pink, pink and dark red versus green but cannot discriminate red versus green due to its similar lightness and chroma. Through field observations, squirrels selected black or brown fruits and fed on the mature seeds although fruits of various colours appear on a tree, such as green, orange, yellow, pink or white ones including immature seeds. Brown, violet or black fruits accounted for 87% of those fruits consumed by these squirrels, whereas those with yellow, orange or red colour accounted for only 7%. The dichromatic colour vision in Finlayson's squirrel may be useful for selecting ripe fruits in preference to unripe ones.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BLAKESLEE, B., JACOBS, G. H. & NEITS, J. 1988. Spectral mechanisms in the tree squirrel retina. Journal of Comparative Physiology A 163:773780.CrossRefGoogle Scholar
BURNS, K. C. & DALEN, J. L. 2002. Foliage color contrasts and adaptive fruit color variation in a bird-dispersed plant community. Oikos 96:463469.CrossRefGoogle Scholar
CAINE, N. G. & MUNDY, N. I. 2000. Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependent on food colour. Proceedings of Royal Society of London B 267:439444.CrossRefGoogle ScholarPubMed
CRESCITELLI, F. & POLLACK, D. 1972. Dichromacy in the antelope ground squirrel. Vision Research 12:15531586.CrossRefGoogle ScholarPubMed
EMMONS, L. H. 1980. Ecology and resource partitioning among nine species of African rain forest squirrels. Ecological Monographs 50:3154.CrossRefGoogle Scholar
FRANCIS, C. M. 2008. A guide to the mammals of Southeast Asia. Princeton University Press, Princeton. 392 pp.Google Scholar
GAUTIER-HION, A., DUPLANTIER, J. M., QURIS, R., FEER, F., SOURD, C., DECOUX, J. P., DUBOST, G., EMMONS, L., ERARD, C., HECKETSWEILER, P., MOUNGAZI, A., ROUSSIHON, C. & THIOLLAY, J. M. 1985. Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 65:324337.CrossRefGoogle Scholar
HART, N. S. 2001. Variations in cone photoreceptor abundance and the visual ecology of birds. Journal of Comparative Physiology A 187:685698.CrossRefGoogle ScholarPubMed
JACOBS, G. H. 1976. Wavelength discrimination in grey squirrels. Vision Research 16: 325327.CrossRefGoogle Scholar
JACOBS, G. H. 1993. The distribution and nature of colour vision among the mammals. Biological Reviews 68:413471.CrossRefGoogle ScholarPubMed
JANSON, C. H. 1983. Adaptation of fruit morphology to dispersal agents in a Neotropical forest. Science 219:187189.CrossRefGoogle Scholar
JORDANO, P. 1995. Angiosperm fleshy fruits and seed dispersers: a comparative analysis of adaptation and constraints in plant-animal interactions. American Naturalist 145:163191.CrossRefGoogle Scholar
KANCHANASAKA, B., BOONKEOW, P., HIRANKRILAS, K., PRAYOON, U. & TAMURA, N. 2014. Color variation of Finlayson's squirrel among populations and individuals in central Thailand. Mammal Study 39:237244.CrossRefGoogle Scholar
KITAMURA, S., YUMOTO, T., POONSWAD, P., CHUAILUA, P., PLONGMAI, K., MARUHASHI, T. & NOMA, N. 2002. Interactions between fleshy fruits and frugivores in a tropical seasonal forest in Thailand. Oecologia 133:559572.CrossRefGoogle Scholar
KITAMURA, S., SUZUKI, S., YUMOTO, T., POONSWAD, P., CHUAILUA, P., PLONGMAI, K., NOMA, N., MARUHASHI, T. & SUCKASAM, C. 2004. Dispersal of Aglaia spectabilis, a large-seeded tree species in a moist evergreen forest in Thailand. Journal of Tropical Ecology 20:421427.CrossRefGoogle Scholar
KITAMURA, S., SUZUKI, S., YUMOTO, T., POONSWAD, P., CHUAILUA, P., PLONGMAI, K., MARUHASHI, T., NOMA, N. & SUCKASAM, C. 2006. Dispersal of Canarium euphyllum (Burseraceae), a large-seeded tree species in a moist evergreen forest in Thailand. Journal of Tropical Ecology 22:123146.CrossRefGoogle Scholar
KURAMOTO, T., TORII, H., IKEDA, H., ENDO, H., RERKAMNUAYCHOKE, W. & OSHIDA, T. 2012. Mitochondria DNA sequences of Finlayson's Squirrel found in Hamamatsu, Shizuoka Prefecture, Japan. Mammal Study 37:6397.CrossRefGoogle Scholar
LOMÁSCOLO, S. B., SPERANZA, P. & KIMBALL, R. T. 2008. Correlated evolution of fig size and color supports the dispersal syndromes hypothesis. Oecologia 156:783796.CrossRefGoogle ScholarPubMed
LUCAS, P. W., DOMINY, N. J., RIBA-HERNANDEZ, P., STONER, K. E., YAMASHITA, N., LORÍA-CALDERÓN, E., PETERSEN-PEREIRA, W., ROJAS-DURÁN, Y., SALAS-PENA, R., SOLIS MADRIGAL, S., OSORIO, D. & DARVELL, B. W. 2003. Evolution and function of routine trichromatic vision in primates. Evolution 57:26362643.Google ScholarPubMed
MACDONALD, I. M. 1992. Grey squirrels discriminate red from green in a foraging situation. Animal Behaviour 43:694695.CrossRefGoogle Scholar
MORGAN, M. J., ADAM, A. & MOLLON, J. D. 1992. Dichromats detect colour-camouflaged objects that are not detected by trichromats. Proceedings of the Royal Society of London B 248:291295.Google Scholar
OSORIO, D. & VOROBYEV, M. 1996. Colour vision as an adaptation to frugivory in primates. Proceedings of Royal Society of London B 263:593599.Google ScholarPubMed
PAYNE, J. B. 1980. Competitors. Pp. 261–277 in Chivers, D. J. (ed.) Malayan forest primates. Plenum Press, New York.Google Scholar
PESSOA, D. M. A., CUNHA, J. F., TOMAZ, C. & PESSOA, V. F. 2005. Colour discrimination in the black tufted ear marmoset (Callithrix penicillata): ecological implications. Folia Primatologica 76:125134.CrossRefGoogle ScholarPubMed
PIZO, M. A. 2002. The seed-dispersers and fruit syndromes of Myrtaceae in the Brazilian Atlantic Forest. Pp. 129143 in Levey, D. J., Silva, W. R. & Galetti, M. (eds.). Seed dispersal and frugivory: ecology, evolution and conservation. CABI Publishing, New York.Google Scholar
REGAN, B. C., JULLIOT, C., SIMMEN, B., VIÉNOT, F., CHARLES-DOMINIQUE, P. & MOLLON, J. D. 2000. Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London B 356:229273.CrossRefGoogle Scholar
SMITH, A. C., BUCHANAN-SMITH, H. M., SURRIDGE, A. K., OSORIO, D. & MUNDY, N. I. 2003. The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.). Journal of Experimental Biology 206:31593165.CrossRefGoogle ScholarPubMed
SMITINAND, T. 2014. Thai plant names. (Revised edition). Forest Herbarium-BKF (the Forest Herbarium), the Department of National Parks, Wildlife and Plant Conservation, Bangkok. http://www.dnp.go.th/botany/Botany_Eng/index.aspx.Google Scholar
SUMNER, P. & MOLLON, J. D. 2000. Chromaticity as a signal of ripeness in fruits taken by primates. Journal of Experimental Biology 203:19872000.CrossRefGoogle ScholarPubMed
VALENTA, K., BURKE, R., STYLER, S. A., JACKSON, D. A., MELIN, A. D. & LEHMAN, S. M. 2013. Colour and odour drive fruit selection and seed dispersal by mouse lemurs. Scientific Reports 3:15.CrossRefGoogle ScholarPubMed
VAN HOOSER, S. D. & NELSON, S. B. 2006. The squirrel as a rodent model of the human visual system. Visual Neuroscience 23:765778.CrossRefGoogle ScholarPubMed
WHEELWRIGHT, N. T. & JANSON, C. H. 1985. Colors of fruit displays of bird-dispersed plants in two tropical forests. American Naturalist 126:777799.CrossRefGoogle Scholar