Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T03:43:02.531Z Has data issue: false hasContentIssue false

Biodiversity and metacommunity structure of animals along altitudinal gradients in tropical montane forests

Published online by Cambridge University Press:  09 November 2015

Michael R. Willig*
Affiliation:
Center for Environmental Sciences and Engineering and Department of Ecology and Evolutionary Biology, University of Connecticut, 3107 Horsebarn Hill Road, Storrs, Connecticut 06269-4210, USA
Steven J. Presley
Affiliation:
Center for Environmental Sciences and Engineering and Department of Ecology and Evolutionary Biology, University of Connecticut, 3107 Horsebarn Hill Road, Storrs, Connecticut 06269-4210, USA
*
1Corresponding author. Email: [email protected]

Abstract:

The study of altitudinal gradients has made enduring contributions to the theoretical and empirical bases of modern biology. Unfortunately, the persistence of these systems and the species that compose them is threatened by land-use change at lower altitudes and by climate change throughout the gradients, but especially at higher altitudes. In this review, we focus on two broad themes that are inspired by altitudinal variation in tropical montane regions: (1) dimensions of biodiversity and (2) metacommunity structure. Species richness generally decreased with increasing altitude, although not always in a linear fashion. Mid-altitudinal peaks in richness were less common than monotonic declines, and altitudinal increases in richness were restricted to amphibian faunas. Moreover, gradients of biodiversity differed among dimensions (taxonomic, phylogenetic and functional) as well as among faunas (bats, rodents, birds) in the tropical Andes, suggesting that species richness is not a good surrogate for dimensions that reflect differences in the function or evolutionary history of species. Tropical montane metacommunities evinced a variety of structures, including nested (bats), Clementsian (rodents, bats, gastropods), quasi-Clementsian (reptiles, amphibians, passerines) and quasi-Gleasonian (gastropods) patterns. Nonetheless, compositional changes were always associated with the ecotones between rain forest and cloud forest, regardless of fauna.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ANDELMAN, S. J. & WILLIG, M. R. 2003. Present patterns and future prospects for biodiversity in the western hemisphere. Ecology Letters 6:818824.CrossRefGoogle Scholar
ANDERSON, R. P., GUTIÉRREZ, E. E., OCHOA, G.J., GARCÍA, F. J. & AGUILERA, M. 2012. Faunal nestedness and species–area relationship for small non-volant mammals in “sky islands” of northern Venezuela. Studies on Neotropical Fauna and Environment 47:157170.CrossRefGoogle Scholar
BARONE, J. A., THOMLINSON, J., ANGLADA-CORDERO, P. & ZIMMERMAN, J. K. 2008. Metacommunity structure of tropical forests along an elevational gradient in Puerto Rico. Journal of Tropical Ecology 24:110.Google Scholar
BARRY, R. G. 2008. Mountain weather and climate. (Third edition). Cambridge University Press, Cambridge. 532 pp.Google Scholar
BARTHLOTT, W., LAUER, W. & PLACKE, A. 1996. Global distribution of species diversity in vascular plants: towards a world map of phytodiversity. Erdkunde 50:317327.Google Scholar
BECKER, A., KÖRNER, C., BRUN, J.-J., GUISAN, A. & TAPPEINER, U. 2007. Ecological and landuse studies along elevational gradients. Mountain Research and Development 27:5865.Google Scholar
BEGON, M., HARPER, J. L. & TOWNSEND, C. R. 1990. Ecology: individuals, populations and communities. Blackwell, Oxford. 958 pp.Google Scholar
BLAKE, J. G. & LOISELLE, B. A. 2000. Diversity of birds along an elevational gradient in the Cordillera Central, Costa Rica. The Auk 117:663686.Google Scholar
BREHM, G., SÜSSENBACH, D. & FIEDLER, K. 2003. Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography 26:456466.CrossRefGoogle Scholar
BROKAW, N., CROWL, T. A., LUGO, A. E., MCDOWELL, W. H., SCATENA, F. N., WAIDE, R. B. & WILLIG, M. R. (eds.). 2012. A Caribbean forest tapestry: the multidimensional nature of disturbance and response. Oxford University Press, New York. 496 pp.Google Scholar
BROWN, J. H. 1971. Mammals on mountaintops: nonequilibrium insular biogeography. American Naturalist 105:467478.Google Scholar
BROWN, J. H. & GIBSON, A. C. 1983. Biogeography. McGraw-Hill, New York. 643 pp.Google Scholar
BROWN, S., LUGO, A. E., SILANDER, S. & LIEGEL, L. 1983. Research history and opportunities in the Luquillo Experimental Forest. General Technical Report SO–44. US Dept. of Agriculture. 132 pp.Google Scholar
BRÜHL, C. A., MOHAMED, M. & LINSENMAIR, K. E. 1999. Altitudinal distribution of leaf litter ants along a transect in primary forests on Mount Kinabalu, Sabah, Malaysia. Journal of Tropical Ecology 15:265277.Google Scholar
CADOTTE, M. W., CAVENDER-BARES, J., TILMAN, D. & OAKLEY, T. H. 2009. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4:e5695.CrossRefGoogle ScholarPubMed
CAVALIER, J. 1986. Relaciones hídricas de nutrientes en bosques enanos nublados tropicales. Unpubl. M.S. thesis, Universidad de los Andes de Merida, Venezuela.Google Scholar
CAVENDER-BARES, J., KOZAK, K. H., FINE, P. V. A. & KEMBEL, S. W. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12:693715.Google Scholar
CISNEROS, L. M., BURGIO, K. R., DREISS, L. M., KLINGBEIL, B. T., PATTERSON, B. D., PRESLEY, S. J. & WILLIG, M. R. 2014. Multiple dimensions of bat biodiversity along an extensive tropical elevational gradient. Journal of Animal Ecology 83:11241136.Google Scholar
CLEMENTS, F. E. 1916. Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington, Washington D.C. 512 pp.Google Scholar
COLEMAN, B. D., MARES, M. A., WILLIG, M. R. & HSIEH, Y. H. 1982. Randomness, area and species richness. Ecology 63:11211133.CrossRefGoogle Scholar
CONNELL, J. H. 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35:131138.CrossRefGoogle Scholar
CORDEIRO, N. J. 1998. Preliminary analysis of the nestedness patterns of montane forest birds of the Eastern Arc Mountains. Journal of East African Natural History 87:101118.Google Scholar
DEVICTOR, V., MOUILLOT, D., MEYNARD, C., JIGUET, F., THUILLER, W. & MOUQUET, N. 2010. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecology Letters 13:10301040.Google Scholar
DIAMOND, J. M. 1975. Assembly of species communities. Pp. 342444 in Cody, M. L. & Diamond, J. M. (eds.). Ecology and evolution of communities. Harvard University Press, Cambridge.Google Scholar
DIAMOND, A. W. & HAMILTON, A. C. 1980. The distribution of forest passerine birds and Quaternary climatic change in Africa. Journal of Zoology 191:379402.CrossRefGoogle Scholar
DÍAZ, S. & CABIDO, M. 2001. Vive la différence: plant functional diversity matters to ecosystem process. Trends in Ecology and Evolution 16:646655.Google Scholar
DREISS, L. M., BURGIO, K. R., CISNEROS, L. M., KLINGBEIL, B. T., PATTERSON, B. D., PRESLEY, S. J. & WILLIG, M. R. 2015. Taxonomic, functional, and phylogenetic dimensions of rodent biodiversity along an extensive tropical elevational gradient. Ecography 38:876888.Google Scholar
FAHRIG, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution & Systematics 34:487515.Google Scholar
FAITH, D. P. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61:110.Google Scholar
FAUTH, J. E., CROTHER, B. I. & SLOWINSKI, J. B. 1989. Elevational patterns of species richness, evenness, and abundance of the Costa Rican leaf-litter herpetofauna. Biotropica 21:178185.Google Scholar
FERNANDES, G. W. & LARA, A. C. F. 1993. Diversity of Indonesian gall-forming herbivores along altitudinal gradients. Biodiversity Letters 1:186192.Google Scholar
FISHER, B. L. 1996. Ant diversity patterns along an elevational gradient in the Réserve Naturelle Intégrale d'Andringitra, Madagascar. Fieldiana Zoology 85:93108.Google Scholar
GARTEN, J. C. T., POST, W. M., HANSON, P. J. & COOPER, L. W. 1999. Forest soil carbon inventories and dynamics along an elevational gradient in the southern Appalachian Mountains. Biogeochemistry 45:115145.Google Scholar
GASTON, K. J. 1998. Species richness: measure and measurement. Pp. 77113 in Gaston, K. J. and Spicer, J. I. (eds,). Biodiversity: an introduction. Blackwell Science, Oxford.Google Scholar
GIARETTA, A. A., FACURE, K. G., SAWAYA, R. J., MEYER, J. H. DE M. & CHEMIN, N. 1999. Diversity and abundance of litter frogs in a montane forest of southeastern Brazil: seasonal and altitudinal changes. Biotropica 31:669674.CrossRefGoogle Scholar
GLEASON, H. A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club 53:726.Google Scholar
GONZÁLEZ, G., GARCIA, E., CRUZ, V., BORGES, S., ZALAMEA, M. & RIVERA, M. M. 2007. Earthworm communities along an elevation gradient in northeastern Puerto Rico. European Journal of Soil Biology 43:S24S32.Google Scholar
GONZÁLEZ, G., WILLIG, M. R. & WAIDE, R. B. (eds.). 2013. Ecological gradient analyses in a tropical landscape. Ecological Bulletins 54:1250.Google Scholar
GRADSTEIN, S. R., HOMEIER, J. & GANSERT, D. (eds.) 2008. The tropical mountain forest: patterns and processes in a biodiversity hotspot. Universitätsverlag Göttingen, Göttingen. 217 pp.CrossRefGoogle Scholar
GRAHAM, G. L. 1983. Changes in bat species diversity along an elevational gradient up the Peruvian Andes. Journal of Mammalogy 64:559571.Google Scholar
GRAHAM, G. L. 1990. Bats versus birds: comparisons among Peruvian volant vertebrate faunas along an elevational gradient. Journal of Biogeography 17:657668.Google Scholar
GRUBB, P. J. 1977. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8:83107.Google Scholar
GRYTNES, J.-A. & MCCAIN, C M. 2007. Elevational trends in biodiversity. Pp. 18 in Levin, S.A. (ed.). Encyclopedia of biodiversity, Academic Press, Waltham.Google Scholar
HEANEY, L. R. 2001. Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Ecology and Biogeography 10:1539.Google Scholar
HEMP, A. 2006. Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecology 184:2742.Google Scholar
HERNANDEZ-ALCANTARA, P., SALAS-DE LEON, D. A., SOLIS-WEISS, V. & MONREAL-GOMEZ, M. A. 2014. Bathymetric patterns of polychaete (Annelida) species richness in the continental shelf of the Gulf of California, Eastern Pacific. Journal of Sea Research 91:7987.CrossRefGoogle Scholar
HILLEBRAND, H. 2004. On the generality of the latitudinal diversity gradient. American Naturalist 163:192211.Google Scholar
HOFER, U., BERSIER, L-F. & BORCARD, D. 1999. Spatial organization of a herpetofauna on an elevational gradient revealed by null model tests. Ecology 80:976988.Google Scholar
HOFER, U., BERSIER, L-F. & BORCARD, D. 2000. Ecotones and gradient as determinants of hepetofaunal community structure in the primary forest of Mount Kupe, Cameroon. Journal of Tropical Ecology 16:517533.CrossRefGoogle Scholar
HOLYOAK, M., LEIBOLD, M. A. & HOLT, R. D. 2005. Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago. 513 pp.Google Scholar
HUSTON, M. A. 1997. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449460.Google Scholar
JANKOWSKI, J. E., CIECKA, A. L., MEYER, N. Y. & RABENOLD, K. N. 2009. Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. Journal of Animal Ecology 78:315327.CrossRefGoogle ScholarPubMed
JANZEN, D. H. 1967. Why mountain passes are higher in the tropics. American Naturalist 101:233249.Google Scholar
KATTAN, G. H. & FRANCO, P. 2004. Bird diversity along elevational gradients in the Andes of Colombia: area and mass effects. Global Ecology and Biogeography 123:451458.Google Scholar
KESSLER, M. 2000. Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology 149:181193.Google Scholar
KIKKAWA, J. & WILLIAMS, W. T. 1971. Altitudinal distribution of land birds in New Guinea. Search 2:6465.Google Scholar
KITAYAMA, K. 1992. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102:149171.Google Scholar
KÖRNER, C. 2003. Alpine plant life. (Second edition). Springer, New York. 349 pp.Google Scholar
LEIBOLD, M. A. & MIKKELSON, G. M. 2002. Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos 97:237250.CrossRefGoogle Scholar
LEIBOLD, M. A., HOLYOAK, M., MOUQUET, N., AMARASEKARE, P., CHASE, J. M., HOOPES, M. F., HOLT, R. D., SHURIN, J. B., LAW, R., TILMAN, D., LOREAU, M. & GONZALEZ, A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7:601613.Google Scholar
LIEBERMAN, D., LIEBERMAN, M., PERALTA, R. & HARTSHORN, G. S. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology 84:137152.Google Scholar
LIEW, T.-S., SCHILTHUIZEN, M. & BIN LAKIM, M. 2010. The determinants of land snail diversity along a tropical elevational gradient: insularity, geometry and niches. Journal of Biogeography 37:10711078.Google Scholar
LOMOLINO, M. V., RIDDLE, B. R., WHITTAKER, R. J. & BROWN, J. H. 2010. Biogeography. (Fourth edition). Sinauer Associates, Sunderland, MA. 560 pp.Google Scholar
LÓPEZ-GONZÁLEZ, C., PRESLEY, S. J., LOZANO, A., STEVENS, R. D. & HIGGINS, C. L. 2012. Metacommunity analysis of Mexican bats: environmentally mediated structure in an area of high geographic and environmental complexity. Journal of Biogeography 39:177192.Google Scholar
MACARTHUR, R. H. 1972. Geographical ecology: patterns in the distributions of species. Princeton University Press, Princeton. 288 pp.Google Scholar
MACARTHUR, R. H. & WILSON, E. O. 1963. An equilibrium theory of insular zoogeography. Evolution 17:373387.Google Scholar
MARTIN, P. H., SHERMAN, R. E. & FAHEY, T. J. 2007. Tropical montane forest ecotones: climate gradients, natural disturbance, and vegetation zonation in the Cordillera Central, Dominican Republic. Journal of Biogeography 34:17921806.Google Scholar
MARTÍNEZ-MORALES, M. A. 2005. Nested species assemblages as a tool to detect sensitivity to forest fragmentation: the case of cloud forest birds. Oikos 108:634642.CrossRefGoogle Scholar
MASON, N. W. H., LANOISELÉE, C., MOUILLOT, D. & ARGILLIER, C. 2007. Functional characters combined with null models reveal inconsistency in mechanisms of species turnover in lacustrine fish communities. Oecologia 153:441452.Google Scholar
MCCAIN, C. M. 2005. Elevational gradients in diversity of small mammals. Ecology 86:366372.Google Scholar
MCCAIN, C. M. 2009. Global analysis of bird elevational diversity. Global Ecology and Biogeography 18:346360.CrossRefGoogle Scholar
MCCAIN, C. M. & COLWELL, R. K. 2011. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecology Letters 14:12361245.Google Scholar
MCCAIN, C. M. & GRYTNES, J.-A. 2010. Elevational gradients in species richness. Pp.110 in Encyclopedia of life sciences. John Wiley & Sons, Hoboken.Google Scholar
MEYBECK, M., GREEN, P. & VÖRÖSMARTY, C. 2001. A new typology for mountains and other relief classes. An application to global continental water resources and population distribution. Mountain Research and Development 21:3445.Google Scholar
MILLER, G. T. & SPOOLMAN, S. 2011. Living in the environment: principles, connections, and solutions. (Seventeenth edition.). Brooks Cole, Belmont. 800 pp.Google Scholar
MITTELBACH, G. G., STEINER, C. F., SCHEINER, S. M., GROSS, K. L., REYNOLDS, H. L., WAIDE, R. B., WILLIG, M. R., DODSON, S. I. & GOUGH, L. 2001. What is the observed relationship between species richness and productivity? Ecology 82:23812396.Google Scholar
MORITZ, C., PATTON, J. L., CONROY, C. J., PARRA, J. L., WHITE, G. C. & BEISSINGER, S. R. 2008. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261264.Google Scholar
NANIWADEKAR, R. & VASUDEVAN, K. 2007. Patterns in diversity of anurans along an elevational gradient in the Western Ghats, South India. Journal of Biogeography 34:842853.CrossRefGoogle Scholar
NOR, S. M. D. 2001. Elevational diversity patterns of small mammals on Mount Kinabalu, Sabah, Malaysia. Global Ecology and Biogeography 10:4162.Google Scholar
OLSON, D. M. 1994. The distribution of leaf litter invertebrates along a Neotropical altitudinal gradient. Journal of Tropical Ecology 10:129150.CrossRefGoogle Scholar
PALIN, O. F., EGGLETON, P., MALHI, Y., GIRARDIN, C. A. J., ROZAS-DÁVILA, A. & PARR, C. L. 2011. Termite diversity along an Amazon–Andes elevation gradient, Peru. Biotropica 43:100107.Google Scholar
PATTERSON, B. D. 1982. Pleistocene vicariance, montane islands, and the evolutionary divergence of some chipmunks (genus Eutamias). Journal of Mammalogy 63:387398.CrossRefGoogle Scholar
PATTERSON, B. D. & ATMAR, A. 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society 28:6582.Google Scholar
PATTERSON, B. D., STOTZ, D. F., SOLARI, S. & FITZPATRICK, J. W. 1998. Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru. Journal of Biogeography 25:593607.Google Scholar
PAVOINE, S. & BONSALL, M. B. 2011. Measuring biodiversity to explain community assembly: a unified approach. Biological Reviews 86:792812.CrossRefGoogle ScholarPubMed
PETCHEY, O. L. & GASTON, K. J. 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9:741758.Google Scholar
PETCHEY, O. L., EVANS, K. L., FISHBURN, I. S. & GASTON, K. J. 2007. Low functional diversity and no redundancy in British avian assemblages. Journal of Animal Ecology 76:977985.CrossRefGoogle ScholarPubMed
PICKETT, S. T. A., KOLASA, J. & JONES, C. G. 1994. Ecological understanding. Academic Press, San Diego. 206 pp.Google Scholar
PINEDA, E. & HALFFTER, G. 2004. Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico. Biological Conservation 117:499508.Google Scholar
PRESLEY, S. J., HIGGINS, C. L., LÓPEZ-GONZÁLEZ, C. & STEVENS, R. D. 2009. Elements of metacommunity structure of Paraguayan bats: multiple gradients require analysis of multiple ordination axes. Oecologia 160:781793.Google Scholar
PRESLEY, S. J., HIGGINS, C. L. & WILLIG, M. R. 2010. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119:908917.Google Scholar
PRESLEY, S. J., WILLIG, M. R., BLOCH, C. P., CASTRO-ARELLANO, I., HIGGINS, C. L. & KLINGBEIL, B. T. 2011. A complex metacommunity structure for gastropods along an elevational gradient. Biotropica 43:480488.Google Scholar
PRESLEY, S. J., CISNEROS, L. M., PATTERSON, B. D. & WILLIG, M. R. 2012. Vertebrate metacommunity structure along an extensive elevational gradient in the tropics: a comparison of bats, rodents and birds. Global Ecology and Biogeography 21:968976.Google Scholar
RAHBEK, C. 1995. The elevational gradient of species richness: a uniform pattern? Ecography 18:200205.Google Scholar
RAHBEK, C. 1997. The relationship among area, elevation, and regional species richness in Neotropical birds. American Naturalist 149:875902.Google Scholar
REX, M. A. 1981. Community structure in the deep-sea benthos. Annual Review of Ecology and Systematics 12:331353.Google Scholar
RICHARDSON, B. A. & RICHARDSON, M. J. 2005. Litter-based invertebrate communities in forest floor and bromeliad microcosms along an elevational gradient in Puerto Rico. Ecological Bulletins 54:101116.Google Scholar
RICHARDSON, B. A., RICHARDSON, M. J. & SOTO-ADAMES, F. N. 2005. Separating the effects of forest type and elevation on the diversity of litter invertebrate communities in a humid tropical forest in Puerto Rico. Journal of Animal Ecology 74:926936.Google Scholar
ROSENZWEIG, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge. 436 pp.Google Scholar
ROSENZWEIG, M. L. & SANDLIN, E. A. 1997. Species diversity and latitude: listening to area's signal. Oikos 80:172176.Google Scholar
ROWE, R. J. 2007. Legacies of land use and recent climatic change: the small mammal fauna in the mountains of Utah. American Naturalist 170:242257.Google Scholar
SAFI, K., CIANCIARUSO, M. V., LOYOLA, R. D., BRITO, D., ARMOUR-MARSHALL, K. & DINIZ-FILHO, J. A. F. 2011. Understanding global patterns of mammalian functional and phylogenetic diversity. Philosophical Transactions of the Royal Society London. Series B. Biological Science 366:25362544.Google Scholar
SÁNCHEZ-CORDERO, V. 2001. Elevation gradients of diversity for rodents and bats in Oaxaca, Mexico. Global Ecology and Biogeography 10:6376.Google Scholar
SCHEINER, S. M. & WILLIG, M. R. 2005. Developing unified theories in ecology as exemplified with diversity gradients. American Naturalist 166:458469.Google Scholar
SCHEINER, S. M., CHIARUCCI, A., FOX, G. A., HELMUS, M. R., MCGLINN, D. J. & WILLIG, M. R. 2011. The underpinnings of the relationship of species richness with space and time. Ecological Monographs 81:195213.Google Scholar
SCHLUTER, D. & RICKLEFS, R. E. 1993. Species diversity: an introduction to the problem. Pp. 110 in Ricklefs, R. E. and Schluter, D. (eds.). Species diversity in ecology. University of Chicago Press, Chicago.Google Scholar
SIMPSON, B. B. 1974. Glacial migrations of plants: island biogeographic evidence. Science 185:698700.Google Scholar
SMITH, S. A., MONTES DE OCA, A. N., REEDER, T. W. & WIENS, J. J. 2007. A phylogenetic perspective on elevational species richness patterns in Middle American treefrogs: why so few species in lowland tropical rainforests? Evolution 61:11881207.Google Scholar
SPASOJEVIC, M. J. & SUDING, K. N. 2012. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. Journal of Ecology 100:652661.Google Scholar
SPEAKMAN, J. R. & THOMAS, D. W. 2003. Physiological ecology and energetics of bats. Pp. 430490 in Kunz, T. H. & Fenton, M. B. (eds.). Bat ecology. University of Chicago Press, Chicago.Google Scholar
SRIVASTAVA, D. S. & LAWTON, J. H. 1998. Why more productive sites have more species: an experimental test of theory using tree-hole communities. American Naturalist 152:510529.Google Scholar
STEVENS, R. D. & WILLIG, M. R. 2002. Geographical ecology at the community level: perspectives on the diversity of New World bats. Ecology 83:545560.Google Scholar
STEVENS, R. D., COX, S. B., STRAUSS, R. E. & WILLIG, M. R. 2003. Patterns of functional diversity across an extensive environmental gradient: vertebrate consumers, hidden treatments and latitudinal trends. Ecology Letters 6:10991108.Google Scholar
STEVENS, R. D., WILLIG, M. R. & STRAUSS, R. E. 2006. Latitudinal gradients in the phenetic diversity of New World bat communities. Oikos 112:4150.Google Scholar
STEVENS, R. D., GAVILANEZ, M. M., TELLO, J. S. & RAY, D. A. 2012. Phylogenetic structure illuminated the mechanistic role of environmental heterogeneity in community organization. Journal of Animal Ecology 81:455462.Google Scholar
SWENSON, N. G. & ENQUIST, B. J. 2009. Opposing assembly mechanisms in a Neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology 90:21612170.Google Scholar
TERBORGH, J. 1971. Distribution on environmental gradients: theory and a preliminary interpretation of distributional patterns in the avifauna of the Cordillera Vilcabamba, Peru. Ecology 52:2340.Google Scholar
TERBORGH, J. 1977. Bird species diversity on an Andean elevational gradient. Ecology 58:10071019.Google Scholar
TERBORGH, J. 1985. The role of ecotones in the distribution of Andean birds. Ecology 66:12371246.Google Scholar
TILMAN, D. 1982. Resource competition and community structure. Princeton University Press, Princeton. 296 pp.Google ScholarPubMed
TILMAN, D., KNOPS, J., WEDIN, D., REICH, P., RITCHIE, M. & SIEMANN, E. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277:13001302.Google Scholar
TURNER, M. G. 1989. Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics 20:171197.Google Scholar
TURNER, M. G., GARDNER, T. H. & O'NEILL, R. V. 2001. Landscape ecology in theory and practice: pattern and process. Springer, New York. 406 pp.Google Scholar
VANCE-CHALCRAFT, H. D., WILLIG, M. R., COX, S. B., LUGO, A. E. & SCATENA, F. N. 2010. Relationship between aboveground biomass and multiple measures of biodiversity in subtropical forest of Puerto Rico. Biotropica 42:290299.Google Scholar
VON HELVERSEN, O. & WINTER, Y. 2003. Glossophagine bats and their flowers: costs and benefits for plants and pollinators. Pp. 346397 in Kunz, T. H. & Fenton, M. B. (eds.). Bat ecology. University of Chicago Press, Chicago.Google Scholar
WAIDE, R. B., WILLIG, M. R., STEINER, C. F., MITTELBACH, G., GOUGH, L., DODSON, S. I., JUDAY, G. P. & PARMENTER, R. 1999. The relationship between productivity and species richness. Annual Review of Ecology and Systematics 30:257300.Google Scholar
WATSON, D. M. 2003. Long-term consequences of habitat fragmentation – highland birds in Oaxaca, Mexico. Biological Conservation 111:282303.Google Scholar
WATSON, D. M. & PETERSON, A. T. 1999. Determinants of diversity in a naturally fragmented landscape: humid montane forest avifaunas of Mesoamerica. Ecography 22:582589.Google Scholar
WEAVER, P. L. 1994. Bano de Oro Natural Area: Luquillo Mountains, Puerto Rico. General Technical Report SO–111. US Dept. of Agriculture. 55 pp.Google Scholar
WEAVER, P. L. & MURPHY, P. G. 1990. Forest structure and productivity in Puerto Rico's Luquillo Mountains. Biotropica 22:6982.Google Scholar
WEBB, C. O. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. American Naturalist 156:145155.Google Scholar
WEBB, C. O., ACKERLY, D. D., MCPEEK, M. A. & DONOGHUE, M. J. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33:475505.Google Scholar
WEINS, J. J., PARRA-OLEA, G., GARCÍA-PARÍS, M. & WAKE, D. B. 2007. Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders. Proceedings of the Royal Society B 274:919928.Google Scholar
WHITEMAN, C. D. 2000. Mountain meteorology. Oxford University Press, New York. 376 pp.CrossRefGoogle Scholar
WHITTAKER, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30:279338.Google Scholar
WILLIG, M. R., KAUFMAN, D. M. & STEVENS, R. D. 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution and Systematics 34:273309.Google Scholar
WILLIG, M. R., PRESLEY, S. J., BLOCH, C. P., CASTRO-ARELLANO, I., CISNEROS, L. M., HIGGINS, C. L. & KLINGBEIL, B. T. 2011. Tropical metacommunities and elevational gradients: effects of forest type and other environmental factors. Oikos 120:14971508.Google Scholar
WILLIG, M. R., PRESLEY, S. J., BLOCH, C. P. & ALVAREZ, J. 2013. Population, community, and metacommunity dynamics of terrestrial gastropods in the Luquillo Mountains: a gradient perspective. Pp. 117140 in González, G., Willig, M. R. & Waide, R. B. (eds.). Ecological gradient analyses in a tropical landscape, Ecological Bulletins, Vol. 54. Wiley, Oxford.Google Scholar
WILSEY, B. J., CHALCRAFT, D. R., BOWLES, C. M. & WILLIG, M. R. 2005. Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology 86:11781184.Google Scholar
WILSON, R. D., TRUEMAN, J. W. H., WILLIAMS, S. E. & YEATES, D. K. 2007. Altitudinally restricted communities of schizophoran flies in Queensland's wet tropics: vulnerability to climate change. Biodiversity and Conservation 16:31633177.Google Scholar
WOLDA, H. 1987. Altitude, habitat and tropical insect diversity. Biological Journal of the Linnean Society 30:313323.Google Scholar
WOLDU, Z., FEOLI, E. & NIGATU, L. 1989. Partitioning an elevational gradient of vegetation from southeastern Ethiopia by probabilistic methods. Vegetatio 81:189198.Google Scholar