Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T17:15:15.578Z Has data issue: false hasContentIssue false

Avian predators avoid attacking artificial aposematic millipedes in Brazilian Atlantic Forest

Published online by Cambridge University Press:  08 November 2016

Luiz F. M. Iniesta
Affiliation:
Centro de Estudos em Biologia Subterrânea, Setor de Zoologia Geral, Departamento de Biologia, Universidade Federal de Lavras, Minas Gerais, Brazil Programa de Pós-Graduação em Ecologia Aplicada, Setor de Ecologia, Departamento de Biologia, Universidade Federal de Lavras, Minas Gerais, Brazil
Pedro Ratton
Affiliation:
Centro de Estudos em Biologia Subterrânea, Setor de Zoologia Geral, Departamento de Biologia, Universidade Federal de Lavras, Minas Gerais, Brazil Programa de Pós-Graduação em Ecologia Aplicada, Setor de Ecologia, Departamento de Biologia, Universidade Federal de Lavras, Minas Gerais, Brazil
Tadeu J. Guerra*
Affiliation:
Programa de Pós-Graduação em Ecologia Aplicada, Setor de Ecologia, Departamento de Biologia, Universidade Federal de Lavras, Minas Gerais, Brazil
*
*Corresponding author. Email: [email protected]

Abstract:

Avian predators may represent an important selective pressure favouring the evolution of aposematic colouration in millipedes that present chemical defences. However, the role of their warning colouration in predator avoidance remains poorly explored under field conditions, especially in Neotropical forests. Thus, to evaluate the hypothesis of the predator avoidance, we conducted a factorial experiment utilizing artificial replicas of millipedes constructed from plasticine and placed in the natural habitat of Odontopeltis aleijadinho (Polydesmida, Chelodesmidae), an Atlantic Forest endemic aposematic millipede. We assessed patterns of attack to aposematic and non-aposematic replicas applied with repugnant fluid extracted from living millipedes and two control treatments, distributed as a total of 300 replicas exposed for 48 h on the forest floor. The average percentage of replicas attacked was nearly 10-fold higher on those non-aposematic control replicas (13.3% ± 3.3%) than on aposematic replicas (1.3% ± 0.9%). In 24 replicas attacked by avian predators, no effect of millipede repugnant fluid was found, but the effect of colouration pattern was statistically significant. Our data support the hypothesis that a warning colouration pattern involving yellow spots symmetrically distributed along the millipede body can mediate avian predator avoidance.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BRODIE, E. D. 1993. Differential avoidance of coral snake banded patterns by free-ranging avian predators in Costa Rica. Evolution 47:227235.Google Scholar
BRODIE, E. D. & MOORE, A. J. 1995. Experimental studies of coral snake mimicry: Do snakes mimic millipedes? Animal Behavior 49:534536.Google Scholar
CAMPOS, R. I., VASCONCELOS, H. L., RIBEIRO, S. P., NEVES, F. S. & SOARES, J. P. 2006. Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa . Ecography 29:442450.Google Scholar
EISNER, T., ALSOP, D., HICKS, K. & MEINWALD, J. 1978. Defensive secretions of millipedes. Pp. 4172 in Born, G. V. R., Eichler, O., Farah, A., Herken, H. & Welch, A. D. (eds). Handbook of experimental pharmacology, Vol. 48: Arthropod venoms. Springer-Verlag, New York.Google Scholar
EISNER, T., EISNER, M. & DEYRUP, M. 1996. Millipede defense: use of detachable bristles to entangle ants. Proceedings of National Academy of Science USA 93:1084810851.Google Scholar
ENGHOFF, H., MANNO, N., TCHIBOZO, S., LIST, M., SCHWARZINGER, B., SCHOEFBERGER, W., SCHWARZINGER, C. & PAOLETTI, M. G. 2014. Millipedes as food for humans: their nutritional and possible antimalarial value – a first report. Evidence-Based Complementary and Alternative Medicine 2014:19.Google Scholar
EXNEROVÁ, A., STYS, P., FUCÍKOVÁ, E., VESELÁ, S., SVÁDOVÁ, K., PROKOPOVÁ, M., JAROSÍK, V., FUCHS, R. & LANDOVÁ, E. 2007. Avoidance of aposematic prey in European tits (Paridae): learned or innate? Behavioral Ecology 18:148156.Google Scholar
FÁVERI, S. B., VASCONCELOS, H. L. & DIRZO, R. 2008. Effects of Amazonian forest fragmentation on the interaction between plants, insect herbivores, and their natural enemies. Journal of Tropical Ecology 24:5764.Google Scholar
LOISELLE, B. A. & FARJI-BRENER, A. G. 2002. What's Up? An experimental comparison of predation levels between canopy and understory in a tropical wet forest. Biotropica 34:327330.Google Scholar
MAREK, P. E. & BOND, J. E. 2009. A Müllerian mimicry ring in Appalachian millipedes. Proceedings of National Academy of Science USA 106:97559760.Google Scholar
MAREK, P. E., PAPAJ, D., YEAGER, J., MOLINA, S. & MOORE, W. 2011. Bioluminescent aposematism in millipedes. Current Biology 2:R680–681.Google Scholar
PENA-BARBOSA, J. P. P., SIERWALD, P. & BRESCOVIT, A. D. 2013. On the largest chelodesmid millipedes: taxonomic review and cladistic analysis of the genus Odontopeltis Pocock, 1894 (Diplopoda; Polydesmida; Chelodesmidae). Zoological Journal of the Linnean Society 169:737764.CrossRefGoogle Scholar
RUXTON, G. D., SHERRATT, T. N. & SPEED, M. 2004. Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, Oxford. 249 pp.Google Scholar
SHEAR, W. A. 2015. The chemical defenses of millipedes (diplopoda): biochemistry, physiology and ecology. Biochemical Systematics and Ecology 61:78117.Google Scholar
SHEAR, W. A., MCPHERSON, I. S., JONES, T. H., LORIA, S. F. & ZIGLER, K. S. 2010. Chemical defense of a troglobiont millipede, Tetracion jonesi Hoffman (Diplopoda, Callipodida, Abacionidae). International Journal of Myriapodology 3:153158.Google Scholar
SIERWALD, P. & BOND, J. M. 2007. Current status of the myriapod class Diplopoda (Millipedes): taxonomic diversity and phylogeny. Annual Review of Entomology 52:401420.Google Scholar
SKELHORN, J. & ROWE, C. 2006. Predator avoidance learning of prey with secreted or stored defences and the evolution of insect defences. Animal Behavior 72:827834.Google Scholar
ZAR, J. H. 1996. Biostatistical analysis. Prentice Hall, Upper Saddle River. 662 pp.Google Scholar