Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T13:43:51.043Z Has data issue: false hasContentIssue false

Aspects of the population biology of the gregarious tree Cordia elaeagnoides in Mexican tropical deciduous forest

Published online by Cambridge University Press:  10 July 2009

Jan M. Van Groenendael
Affiliation:
Department of Terrestrial Ecology and Nature Conservation, Agricultural University, Bornsesteeg 69, 6708 PD Wageningen, The Netherlands
Stephen H. Bullock
Affiliation:
Departamento de Ecología, Centro de Investigatión Científica y de Educatión Superior de Ensenada, Apartado Postal 2732, 22800 Ensenada, Baja California, México
L. Alfredo Pérez-Jiménez
Affiliation:
Instituto de Biología, Universidad National Autónoma de México, Apartado Postal 70-233, 04510 México, D.F., México

Abstract

Cordia elaeagnoides is locally important within a large area of southern México as a highly gregarious canopy tree of dry forest and as a timber species. Its recruitment is problematic so studies of its reproduction and population dynamics were undertaken. The distylous flowers are apparently self-compatible, and pollination and seed dispersal are by wind. Pre-dispersal mortality is largely from embryo abortion, and post-dispersal predation is mostly by generalist rodents. Some seeds may survive in enforced dormancy for two or more years. Recruitment was apparently absent for more than a decade, but had previously occurred within established stands, where size classes were interspersed at random. Population size structure suggests that recruitment over the last century occurred in several pulses. Growth rates determined from ring counts and remeasurement of marked trees support a size-age relationship. The youngest reproductive trees are estimated to be about 18 years old, and about 5% of the present population is over 95 years old.

Resumen

Cordia elaeagnoides es una esecie gregaria del dosel muy importante localmente en la selva tropical caducifolia del sur de México; además es maderable. Ya que su reclutamiento no es regular se llevaron a cabo estudios sobre su reproducción y dinámica poblacional. Las flores diestílicas aparentemente son autocompatibles y la polinización y dispersión de semillas son por el viento. La mortalidad predispersión es principalmente por aborción de embriones y la posterior a la dispersión por roedores generalistas. Aparentemente no hubo reclutamiento durante más de una década, pero sucedió anteriormente dentro de los parajes, donde árboles de diferentes clases de tamaño se encuentran entremezclados al azar. La estructura poblacional por tamaños sugiere que el reclutamiento durante el último siglo occurió en varios pulsos. Tasas de crecimiento determinados por conteo de anillos y por remedición de árboles marcados sostienen una relación tamañoedad. La edad de los arboles reproductivos más jóvenes se estima en 18 años y un 5% de la población actual tiene más de 95 años.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Alvarez-Buylla, R. M. E. & Martínez-Ramos, M. 1992. Demography and allometry of Cecropia obtusifolia, a neotropical pioneer tree – an evaluation of the climax-pioneer paradigm for tropical rain forests. Journal of Ecology 80:275290.CrossRefGoogle Scholar
Baas, P. & Vetter, R. E. 1989. Growth rings in tropical trees. IAWA Bulletin 10:9599.Google Scholar
Barajas-Morales, J. & León, G. C. 1989. Anatomía de maderas de México: epecies de una selva baja cadudfolia. Publicaciones Especiales No. 1. Instituto de Biología, UNAM, México. 163 pp.Google Scholar
Bhattacharyya, A., Yadav, R. R., Borgaonkar, H. P. & Pant, G. B. 1992. Growth ring analysis of Indian tropical trees: dendroclimatic potential. Current Science 62:736741.Google Scholar
Boninsegna, J. A., Villalba, R., Amarilla, L. & Ocampo, J. 1989. Studies on tree rings, growth rates and age-size relationships of tropical tree species in Misiones, Argentina. IAWA Bulletin 10:161169.CrossRefGoogle Scholar
Bormann, F. H. & Berlyn, G. 1981. Age and growth rate of tropical trees. Yale University Press, New Haven. 137 pp.Google Scholar
Boucher, D. H. 1981. Seed predation by mammals and forest dominance by Quercus oleoides, a tropical lowland oak. Oecologia 49:409414.CrossRefGoogle ScholarPubMed
Bullock, S. H. 1985. Breeding systems in the flora of a tropical deciduous forest in Mexico. Biotropica 17:287301.CrossRefGoogle Scholar
Bullock, S. H. 1986. Climate of Chamela, Jalisco, and trends in the south coastal region of México. Archives for Meteorology, Geophysics and Bioclimatology, Series B 36:297316.CrossRefGoogle Scholar
Bullock, S. H. & Solis-Magallanes, J. A. 1990. Phenology of canopy trees of tropical deciduous forest in Mexico. Biotropica 22:2235.CrossRefGoogle Scholar
Ceballos, G. & Miranda, A. 1986. Los mamíferos de Chamela, Jalisco. Instituto de Biología, UNAM, México.Google Scholar
Clark, D. A. & Clark, D. B. 1984. Spacing dynamics of a tropical rain forest tree: evaluation of the Janzen-Connell model. American Naturalist 124:769788.CrossRefGoogle Scholar
Corner, E. J. H. 1976. The seeds of dicotyledons, Vol. 1. Cambridge University Press, London.Google Scholar
Guevara-Fefer, F. 1977. Dimámica de poblaciones de semillas de Cordia elaeagnoides DC. en una selva baja caducifolia. Professional Thesis, Facultad de Ciencias, UNAM, México.Google Scholar
Hamann, O. 1979. Dynamics of a stand of Scalesia pedunculala Hooker fil., Santa Cruz Island, Galápagos. Botanical Journal of the Linnean Society 78:6784.CrossRefGoogle Scholar
Hamill, D. N. & Wright, S. J. 1986. Testing the dispersion of juveniles relative to adults: a new analytical method. Ecology 67:952957.CrossRefGoogle Scholar
Hart, T. B., Hart, J. A. & Murphy, P. G. 1989. Monodominant and species-rich forests of the humid tropics: causes for their co-occurrence. American Naturalist 133:613633.CrossRefGoogle Scholar
Hartshorn, G. S. 1972. The ecological life history and population dynamics of Pentaclethra macroloba, a tropical wet forest dominant, and Stryphnolobium excelsum, an occasional associate. PhD Dissertation, College of Forest Resources, University of Washington, Seatde.Google Scholar
Hubbell, S. P. 1979. Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203:12991309.CrossRefGoogle Scholar
Janzen, D. H. 1989. Natural history of a wind-pollinated Central American dry forest legume tree (Ateleia kerbert-smithii Pittier). Monographs in Systematic Botany of the Missouri Botanical Gardens 29:293376.Google Scholar
Kellman, M. 1974. Preliminary seed budgets for two plant communities in coastal British Columbia. Journal of Biogeography 1:123133.CrossRefGoogle Scholar
Lieberman, D., Lieberman, M., Hartshorn, G. & Peralta, R. 1985. Growth rates and age-size relationships of tropical wet forest trees in Costa Rica. Journal of Tropical Ecology 1:97109.CrossRefGoogle Scholar
Lieberman, M. & Lieberman, D. 1985. Simulation of growth curves from periodic increment data. Ecology 66:632635.CrossRefGoogle Scholar
Lott, E. J., Bullock, S. H. & Solís-Magallanes, J. A. 1987. Floristic diversity and structure of upland and arroyo forests of coastal Jalisco. Biotropica 19:228235.CrossRefGoogle Scholar
Martijena, N. E. & Bullock, S. H. 1994. Monospecific dominance of a tropical deciduous forest in México. Journal of Biogeography 21:6374.Google Scholar
Netolitzky, F. 1926. Anatomic der Angiospermen-Samen. Handbuch der Pflanzenanatomie, Band X. Borntraeger Verlag, Berlin. 364 pp.Google Scholar
Opler, P. A., Baker, H. G. & Frankie, G. W. 1975. Reproductive biology of some Costa Rican Cordia species (Boraginaceae). Biotropica 7:234247.CrossRefGoogle Scholar
Platt, W. J. & Strong, D. R. 1989. Gaps in forest ecology. Ecology 70:535.Google Scholar
Pennington, T. D. & Sarukhán, J. 1968. Árboles tropicales de México. Instituto Nacional de Investigaciones Forestales S.A.G. México. 413 pp.Google Scholar
Rai, S. N. 1978. Rate of growth of Dalbergia latifolia Roxb. and Xylia dolabriformis Benth. Indian Journal of Forestry 1:5665.Google Scholar
Rohmeder, E. 1967. Beziehungen zwischen Frucht- bzw. Samenerzeugung und Holzerzeugung der Waldblüme. Allgemeine Forstzeitung 22:3339.Google Scholar
Sarukhán, J. 1978. Studies on the demography of tropical trees. Pp. 163184 in Tomlinson, P. B. & Zimmermann, M. H. (eds). Tropical trees as living systems. Cambridge University Press, Cambridge.Google Scholar
Shiokura, T. 1989. A method to measure radial increment in tropical trees. IAWA Bulletin 10:147154.CrossRefGoogle Scholar
Skoglund, J. 1992. The role of seed banks in vegetation dynamics and restoration of dry tropical ecosystems. Journal of Vegetation Science 3:357360.CrossRefGoogle Scholar
Swaine, M. D. 1989. Population dynamics of tree species in tropical forests. Pp. 101110 in Holm-Nielsen, L. B., Nielsen, I. C. & Balslev, H. (eds). Tropical forests: botanical dynamics, speciation and diversity. Academic Press, London.CrossRefGoogle Scholar
Tschinkel, H. M. 1966. Annual growth rings in Cordia alliodora. Turrialba 16:7380.Google Scholar
Vetter, R. E. & Botosso, P. C. 1989. Remarks on age and growth rate determination of Amazonian trees. IAWA Bulletin 10:133145.CrossRefGoogle Scholar
Worbes, M. 1989. Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the Neotropics. IAWA Bulletin 10:109122.CrossRefGoogle Scholar