Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T21:19:04.899Z Has data issue: false hasContentIssue false

Are neotropical predictors of forest epiphyte–host relationships consistent in Indonesia?

Published online by Cambridge University Press:  09 January 2017

Robin Martin Hayward*
Affiliation:
CIRCLE, Environment Department, Wentworth Way, University of York, Heslington, York YO10 5NG, UK
Thomas Edward Martin
Affiliation:
Operation Wallacea Ltd, Wallace House, Old Bolingbroke, Lincolnshire, PE23 4EX, UK
Timothy Michael Arthur Utteridge
Affiliation:
Identification & Naming Department, Royal Botanic Gardens, Kew, Richmond TW9 3AE, UK
Abdul Haris Mustari
Affiliation:
Faculty of Forestry, Department of Conservation of Forest Resources and Ecotourism, Kampus Fahutan, IPB Darmaga, Kotak Pos 168, Bogor 16001, Indonesia
Andrew Robert Marshall
Affiliation:
CIRCLE, Environment Department, Wentworth Way, University of York, Heslington, York YO10 5NG, UK Flamingo Land Ltd, Malton YO17 6UX, UK
*
*Corresponding author. Email: [email protected]

Abstract:

Epiphytes represent keystone resources for many arthropod and vertebrate species, however their ecology remains poorly explored, especially within the palaeotropics. Several recent studies have examined relationships between epiphyte richness and characteristics of local habitats, although these have all focused on neotropical forests. Here, we aim to determine whether predictors of neotropical epiphyte richness are consistent at a palaeotropical site. A total of 44 host trees (dbh range 25–288 cm) were sampled at two study sites on Buton Island, Indonesia. For each tree, epiphyte richness and seven variables relating to characteristics of the host tree and surrounding habitats were recorded: site (a proxy value for disturbance level and water availability), host above-ground biomass (agb), altitude, bark texture, exposure, emergence and crown area. Gaussian GLM analyses indicated that the percentage deviance explained in epiphyte richness per host was greatest for agb (20.9%), crown area (19.6%) and site (15.5%); similar to previous findings from the neotropics. Results therefore suggest that high epiphyte diversity within palaeotropical forests is most likely to be found in large tracts of undisturbed forest, supporting large, broad-crowned trees.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BARKER, M. G. & PINARD, M. A. 2001. Forest canopy research: sampling problems, and some solutions. Plant Ecology 153:2338.Google Scholar
BARLOW, J., MESTRE, L. A. M., GARDNER, T. A. & PERES, C. A. 2007. The value of primary, secondary and plantation forests for Amazonian birds. Biological Conservation 136:212231.Google Scholar
BENZING, D. H. 1998. Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Climatic Change 39:519540.Google Scholar
CALLAWAY, R. M., REINHART, K. O., MOORE, G. W. & PENNINGS, S. C. 2002. Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132:221230.Google Scholar
CARDELUS, C. L., COLWELL, R. K. & WATKINS, J. E. 2006. Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. Journal of Ecology 94:144156.CrossRefGoogle Scholar
CHAVE, J., COOMES, D. A., JANSEN, S., LEWIS, S. L., SWENSON, N. G. & ZANNE, A. E. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12:351366.Google Scholar
CHAVE, J., RÉJOU-MÉCHAIN, M., BÚRQUEZ, A., CHIDUMAYO, E., COLGAN, M. S., DELITTI, W. B. C., DUQUE, A., EID, T., FEARNSIDE, P. M., GOODMAN, R. C., HENRY, M., MARTÍNEZ-YRÍZAR, A., MUGASHA, W. A., MULLER-LANDAU, H. C., MENCUCCINI, M., NELSON, B. W., NGOMANDA, A., NOGUEIRA, E. M., ORTIZ-MALAVASSI, E., PÉLISSIER, R., PLOTON, P., RYAN, C. M., SALDARRIAGA, J. G. & VIEILLEDENT, G. 2015. Improved allometric models to estimate above ground biomass of tropical trees. Global Change Biology 20:31773190.Google Scholar
CORLETT, R. T. & PRIMACK, R. B. 2011. Tropical rain forests: an ecological and biogeographical comparison. (Second edition). Wiley-Blackwell, Singapore.Google Scholar
DIAS-TERCEIRO, R. G., PEIXOTO, G. M., GOMES, V. S., MENEZES, M. C., NECO, E. C., PESSOA, T. S. A., FABRICANTE, J. R. & ALBUQUERQUE, M. B. 2015. Edge effect on vascular epiphytic composition in a fragment of Atlantic Forest in northeastern Brazil. Acta Botanica Brasilica 29:270273.Google Scholar
ES'KOV, A. K. 2013. Epiphytic communities of arboreal formations in Southern Vietnam: an analysis of species composition and synusias structure in dependence on the extent of anthropogenic impact. Zhurnal Obshchei Biologii 74:386398.Google Scholar
FAYLE, T. M., CHUNG, A. Y. C., DUMBRELL, A. J., EGGLETON, P. & FOSTER, W. A. 2009. The effect of rain forest canopy architecture on the distribution of epiphytic ferns (Asplenium spp.) in Sabah, Malaysia. Biotropica 41:676681.Google Scholar
FLORES-PLACIOS, A. & GARCÍA-FRANCO, J. G. 2006. The relationship between tree size and epiphyte species richness: testing four different hypotheses. Journal of Biogeography 33:232330.Google Scholar
GENTRY, A. H. & DODSON, C. H. 1987. Diversity and biogeography of Neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74:205233.Google Scholar
GILLESPIE, G. R., HOWARD, S., STROUD, J. T., UL-HASSANAH, A., CAMPLING, M., LARDNER, B., SCROGGIE, M. P. & KUSRINI, M. 2015. Responses of tropical forest herpetofauna to moderate anthropogenic disturbance and effects of natural habitat variation in Sulawesi, Indonesia. Biological Conservation 192: 161173.Google Scholar
GOODMAN, R. C., PHILLIPS, O. L. & BAKER, T. R. 2014. The importance of crown dimensions to improve tropical tree biomass estimates. Ecological Applications 24:680698.Google Scholar
HSU, R. C. C. & WOLF, J. H. D. 2009. Diversity and phytogeography of vascular epiphytes in a tropical-subtropical transition island, Taiwan. Flora – Morphology Distribution Funtional Ecology of Plants 204:612627.Google Scholar
HSU, R. C. C., TAMIS, W. L. M., RAES, N., DE SNOO, G. R., WOLF, J. H. D., OOSTERMEIJER, G. & LIN, S. H. 2012. Simulating climate change impacts on forests and associated vascular epiphytes in a subtropical island of East Asia. Diversity and Distributions 18: 334347.Google Scholar
LAUBE, S. & ZOTZ, G. 2003. Which abiotic factors limit vegetative growth in a vascular epiphyte? Functional Ecology 17: 598604.Google Scholar
MALE, T. D. & ROBERTS, G. E. 2005. Host associations of the strangler fig Ficus watkinsiana in a subtropical Queensland rain forest. Austral Ecology 30: 229236.Google Scholar
NADKARNI, N. M., PARKER, G. & LOWMAN, M. 2011. Forest canopy studies as an emerging field of science. Annals of Forest Science 68:217224.Google Scholar
POWLING, A., PHILLIPS, A., PRITCHETT, R., SEGAR, S. T., WHEELER, R. & MARDIASTUTI, A. 2015. The vegetation of Lambusango Forest, Buton, Indonesia. Reinwardtia 14:265286.Google Scholar
WHITTEN, T., MUSTAFA, M. & HENDERSON, G. S. 2002. The ecology of Sulawesi. (Second edition). Gadjah Mada University Press, Yogyakarta.Google Scholar
WOODS, C. L., CARDELUS, C. L. & DEWALT, S. J. 2015. Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. Journal of Ecology 103:421430.Google Scholar
ZUUR, A. F., IENO, E. N. & ELPHICK, C. S. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1:314.Google Scholar