Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T01:12:23.818Z Has data issue: false hasContentIssue false

The anomaly of monodominant tropical rainforests: some preliminary observations in the Nothofagus-dominated rainforests of New Caledonia

Published online by Cambridge University Press:  10 July 2009

Jennifer Read
Affiliation:
Department of Ecology and Evolutionary Biology, Monash University, Clayton, Victoria 3168, Australia
Patricia Hallam*
Affiliation:
Division of Forestry and Forest Products, Commonwealth Scientific and Industrial Research Organization, Stowell Avenue, Battery Point, Tasmania 7000, Australia
Jean-François Cherrier
Affiliation:
CIRAD – FORET/NC, B.P. 10001, Montravel-Nouméa, New Caledonia
*
110 Andrew St, North Hobart, Tasmania 7000.

Abstract

Nothofagus species dominate small patches of rainforest on ultramafic soils in New Caledonia, forming an almost monospecific upper canopy on some sites. These stands are commonly bordered by rainforests of greater floristic and structural complexity, also on ultramafic soils. In two lowland stands, the population size structures of Nothofagus aequilateralis stems greater than 50 cm high had an approximately skewed bell-shaped distribution with a modal size class of 15–25 cm stem diameter, and with no evidence of old trees. This indicates that the establishment of Nothofagus has occurred over a limited time span, without sufficient recent regeneration to allow the future replacement of the existing canopy trees. The factors initiating the major period of regeneration are not certain, but large-scale disturbance is implicated and evidence of past wild-fire on both sites is consistent with this hypothesis. It is unlikely that significant regeneration of Nothofagus will occur as the stands mature and canopy gaps are created by the death of old trees, since saplings of other species already occur at high densities in the understorey and will probably pre-empt the resources made available by canopy gaps. Two other study sites were situated above 900 m asl. At Dzumac, in an apparently older stand dominated by N. codonandra, there is some evidence of recent regeneration, predominantly confined to a single large canopy gap. The population size structure of N. baumanniae on the fourth site, on the summit of Mt Mou, shows a closer approximation to a reverse-J curve. Seedlings, however, are relatively uncommon on this site, and the numerous saplings may be suppressed rather than young.

Analyses of topsoil provided no consistent evidence to suggest that mineral content is controlling the distribution of Nothofagus across vegetation boundaries.

The environmental factors promoting the formation of these monodominant canopies are uncertain, but appear to involve large-scale disturbance by windstorm or fire. The population size structures suggest that the canopies of the two lowland stands, at least, are likely to become more species-rich, with a progressive decline in the frequency of Nothofagus. Therefore, these lowland monodominant forests cannot be regarded as equilibrium communities, irrespective of whether more detailed studies reveal environmental differences across the community boundaries. The status of the two high altitude sites is less certain.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Allen, S. E., Parkinson, J. A. & Rowland, A. P. 1989. Pollutants. Pp. 201239 in Allen, S. E. (ed.). Chemical analyis of ecological materials. Blackwell Scientific Publications, Oxford. 368 pp.Google Scholar
Anderson, M. C. 1964. Studies of the woodland light climate. I. The photographic computation of light conditions. Journal of Ecology 52:2741.CrossRefGoogle Scholar
Anderson, M. C. 1970. Radiation and crop structure. Pp. 412466 in Sestak, Z., Catsky, J. & Jarvis, P. G. (eds). Plant photosynthetic production: manual of methods. Dr W. Junk Publishers, The Hague.Google Scholar
Anonymous, 1981. Eléments généraux du climat. In Atlas de la Nouvelle-Calédonie, ORSTOM, Paris.Google Scholar
Ash, J. 1982. The Nothofagus Blume (Fagaceae) of New Guinea. Pp. 355380 in Gressitt, J. L. (ed.). Biogeography and ecology of New Guinea. Vol. 1. Dr W. Junk Publishers, The Hague.CrossRefGoogle Scholar
Birrell, K. S. & Wright, A. C. S. 1945. A serpentine soil in New Caledonia. New Zealand Journal of Science and Technology 27:7276.Google Scholar
Brundrett, M. 1991. Mycorrhizas in natural ecosystems. Advances in Ecological Research 21:171313.CrossRefGoogle Scholar
Brooks, R. R. 1987. Serpentine and its vegetation. Dioscorides Press, Portland. 454 pp.Google Scholar
Cherrier, J.-F. 1984. Les forêts denses de Nouvelle-Calédonie. Service des Forêts et du Patrimoine Naturel, Nouméa.Google Scholar
Connell, J. H. 1978. Diversity in tropical rainforests and coral reefs. Science 199:13021310.CrossRefGoogle Scholar
Connell, J. H. & Lowman, M. D. 1989. Low-diversity tropical rainforests: some possible mechanisms for their existence. American Naturalist 134:88119.CrossRefGoogle Scholar
Dawson, J. W. 1966. Observations on Nothofagus in New Caledonia. Tuatara 14:17.Google Scholar
Dawson, J. W. 1981. The species-rich, highly endemic serpentine flora of New Caledonia. Tuatara 25:16.Google Scholar
Dettmann, M. E., Pocknall, D. T., Romero, E. J. & Zamaloa, M. De C. 1990. Nothofagidites Erdtman ex Potonié, 1960; a catalogue of species with notes on the paleogeographic distribution of Nothofagus Bl. (Southern Beech). New Zealand Geological Survey Paleontological Bulletin 60. 79 pp.Google Scholar
Dupont, J. 1989. Géologie de la Nouvelle-Calédonie. Pp. 1617 in Mathieu-Daude, J. (ed.). Atlas de Nouvelle-Calédonie. Editions du Cagou, Nouméa.Google Scholar
Grimshaw, H. M. 1987. The determination of total phosphorus in soils by acid digestion. Pp. 9295 in Rowland, A. P. (ed.). Chemical analysis in environmental research. Institute of Terrestrial Ecology.Google Scholar
Grimshaw, H. M. 1989. Analysis of soils. Pp. 745 in Allen, S. E. (ed.). Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford. 368 pp.Google Scholar
Grimshaw, H. M., Allen, S. E. & Parkinson, J. A. 1989. Pp. 81159 in Allen, S. E. (ed.). Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford. 368 pp.Google Scholar
Hart, T. H. 1990. Monospecific dominance in tropical rain forests. Trends in Ecology and Evolution 5:611.CrossRefGoogle ScholarPubMed
Hill, R. S. 1987. Discovery of Nothofagus fruits corresponding to an important Tertiary pollen type. Nature 327:5658.CrossRefGoogle Scholar
Hill, R. S. 1991. Tertiary Nothofagus (Fagaceae) macrofossils from Tasmania and Antarctica and their bearing on the evolution of the genus. Botanical Journal of the Linnean Society 105:73112.CrossRefGoogle Scholar
Howard, T. M. 1981. Southern closed forests. Pp. 102120 in Groves, R. H. (ed.). Australian vegetation. Cambridge University Press, London.Google Scholar
Hürlimann, J. H. 1962. The structure of some biocoenoses of New Caledonia. Proceedings of the 9th Pacific Science Congress 4:8994.Google Scholar
Jackson, W. D. 1968. Fire, air, water and earth – an elemental ecology of Tasmania. Proceedings of the Ecological Society of Australia 3:916.Google Scholar
Jaffré, T. 1980. Étude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle-Calédonie. Travaux et Documents de l'ORSTOM, 124; 274 pp.Google Scholar
Jaffré, T., Morat, Ph., Veillon, J.-M. & MacKee, H. S. 1987. Changements dans la végétation de la Nouvelle-Calédonie au cours du Tertaire: la végétation et la flore des roches ultrabasiques. Adansonia 4:365391.Google Scholar
Jaffré, T. & Veillon, J.-M. 1991. Étude floristique et structurale de deux forêts denses humides sur roches ultrabasiques en Nouvelle-Calédonie. Adansonia 3–4:243273.Google Scholar
June, S. R. & Ogden, J. 1978. Studies on the vegetation of Mount Colenso, New Zealand. 4. An assessment of the processes of canopy maintenance and regeneration strategy in a red beech (Nothofagus fusca) forest. New Zealand Journal of Ecology 1:715.Google Scholar
Kalkman, C. & Vink, W. 1970. Botanical exploration in the Doma Peaks region, New Guinea. Blumea 18:88135.Google Scholar
Latham, M. 1975a. Les sols d'un massif de roches ultrabasiques de la Côte Ouest de Nouvelle Calédonie Le Boulinda. 1. Généralités – Répartition des sols dans le massif. Les sols à accumulation humifère. Cahiers ORSTOM, série Pédologique 13:2740.Google Scholar
Latham, M. 1975b. Les sols d'un massif de roches ultrabasiques dse la Côte Ouest de Nouvelle Calédonie Le Boulinda. 2. Les sols à accumulation ferrugineuse relative. Cahiers ORSTOM, série Pédologique 13:159172.Google Scholar
Lee, J., Brooks, R. R., Reeves, R. D., Boswell, C. R. & Jaffré, T. 1977. Plant-soil relationshps in a New Caledonian serpentine flora. Plant and Soil 46:675680.CrossRefGoogle Scholar
Malloch, D. W., Pirozynski, K. A. & Raven, P. H. 1980. Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). Proceedings of the National Academy of Science 77:21132118.CrossRefGoogle ScholarPubMed
McQueen, D. R. 1983. Notes on the ecology of Nothofagus aequilateralis in New Caledonia. Tuatara 26:6269.Google Scholar
Mitchell, P. L. & Whitmore, T. C. 1993. Use of hemispherical photographs in forest ecology. Oxford Forestry Institute Occasional Papers No. 44. 39 pp.Google Scholar
Moser, M. 1967. Die ektotrophe Ernahrungsweise an der Waldgrenze. Mitt. Forstl. Bundesversuchsanstalt Wien Heft 75:359380.Google Scholar
Ogden, J. 1985. An introduction to plant demography with special reference to New Zealand trees. New Zealand Journal of Botany 23:751772.CrossRefGoogle Scholar
Read, J. 1989. Phenology and germination in some rainforest canopy species at Mt Field National Park, Tasmania. Papers and Proceedings of the Royal Society of Tasmania 123:211221.CrossRefGoogle Scholar
Read, J. 1990. Some effects of acclimation temperature on net photosynthesis in some tropical and extra-tropical Australasian Nothofagus species. Journal of Ecology 78:100112.CrossRefGoogle Scholar
Read, J. & Brown, M. J. In press. The ecology of Nothofagus forests in Australia. In Veblen, T. T., Hill, R. S. & Read, J. (eds). The ecology and biogeography of Nothofagus forests. Yale University Press, New Haven.Google Scholar
Read, J. & Hill, R. S. 1985. Photosynthetic responses to light of Australian and Chilean species of Nothofagus and their relevance to the rainforest dynamics. New Phytologist 101:731742.CrossRefGoogle Scholar
Read, J. & Hill, R. S. 1988. The dynamics of some rainforest associations in Tasmania. Journal of Ecology 76:558584.CrossRefGoogle Scholar
Read, J., Hope, G. S. & Hill, R. S. 1990. The dynamics of some Nothofagus-dominated rainforests in Papua New Guinea. Journal of Biogeography 17:185204.CrossRefGoogle Scholar
Richards, P. W. 1952. The tropical rain forest. Cambridge University Press. 450 pp.Google Scholar
Singer, R. & Morello, J. H. 1960. Ectotrophic forest tree mycorrhizae and forest communities. Ecology 41:549551.CrossRefGoogle Scholar
Stewart, G. H. & Rose, A. B. 1990. The significance of life history strategies in the developmental history of mixed beech (Nothofagus) forest, New Zealand. Vegetatio 87:101114.CrossRefGoogle Scholar
Van Steenis, C. G. G. J. 1971a. Nothofagus, key genus of plant geography, in time and space, living and fossil, ecology and phylogeny. Blumea 19:6598.Google Scholar
Van Steenis, C. G. G. J. 1971b. Revision of Nothofagus in New Caledonia. Adansonia 11:615624.Google Scholar
Veblen, T. T. 1989. Nothofagus regeneration in treefall gaps in northern Patagonia. Canadian Journal of Forest Research 19:365371.CrossRefGoogle Scholar
Veblen, T. T. & Ashton, D. H. 1978. Catastrophic influences on the vegetation of the Valdivian Andes, Chile. Vegetatio 36:149167.CrossRefGoogle Scholar
Veblen, T. T., Ashton, D. H., Schlegel, F. M. & Veblen, A. T. 1977. Plant succession in a timberline depressed by vulcanism in south-central Chile. Journal of Biogeography 4:275294.CrossRefGoogle Scholar
Veblen, T. T., Donoso, Z. C., Schlegel, F. M. & Escobar, R. B. 1981. Forest dynamics in south-central Chile. Journal of Biogeography 8:211247.CrossRefGoogle Scholar
Wardle, J. A. 1984. The New Zealand beeches. Ecology, utilisation and management. New Zealand Forest Service, Wellington.Google Scholar
Wardle, P. 1973. New Guinea: our tropical counterpart. Tuatara 20:113124.Google Scholar
Whitmore, T. C. 1984. Tropical rainforests of the Far East. Clarendon Press, Oxford. 352 pp.Google Scholar
Wilkinson, L. 1990. Systat: The system for statistics. Evanston, Illinois: SYSTAT, Inc.Google Scholar
Yang, X. H., Brooks, R. R., Jaffré, T. & Lee, J. 1985. Elemental levels and relationships in the Flacourtiaceae of New Caledonia and their significance for the evaluation of the serpentine problem. Plant and Soil 87:281291.CrossRefGoogle Scholar