Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T19:09:51.120Z Has data issue: false hasContentIssue false

Tropical forest dynamics in unstable terrain: a case study from New Guinea

Published online by Cambridge University Press:  25 April 2018

John B. Vincent
Affiliation:
Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota 55108, USA
Benjamin L. Turner
Affiliation:
Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancon, Republic of Panama
Clant Alok
Affiliation:
New Guinea Binatang Research Center, P. O. Box 604, Madang, Papua New Guinea
Vojtech Novotny
Affiliation:
Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
George D. Weiblen
Affiliation:
Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota 55108, USA
Timothy J. S. Whitfeld*
Affiliation:
Department of Ecology and Evolutionary Biology, Brown University, 34 Olive Street, Box G-B225, Providence, Rhode Island 02912, USA
*
*Corresponding author. Email: [email protected]

Abstract:

Long-term forest dynamics plots in the tropics tend to be situated on stable terrain. This study investigated forest dynamics on the north coast of New Guinea where active subduction zones are uplifting lowland basins and exposing relatively young sediments to rapid weathering. We examined forest dynamics in relation to disturbance history, topography and soil nutrients based on partial re-census of the 50-ha Wanang Forest Dynamics Plot in Papua New Guinea. The plot is relatively high in cations and phosphorus but low in nitrogen. Soil nutrients and topography accounted for 29% of variation in species composition but only 4% of variation in basal area. There were few areas of high biomass and most of the forest was comprised of small-diameter stems. Approximately 18% of the forest was less than 30 y old and the annual tree mortality rate of nearly 4% was higher than in other tropical forests in South-East Asia and the neotropics. These results support the reputation of New Guinea's forests as highly dynamic, with frequent natural disturbance. Empirical documentation of this hypothesis expands our understanding of tropical forest dynamics and suggests that geomorphology might be incorporated in models of global carbon storage especially in regions of unstable terrain.

Type
Research Article
Creative Commons
This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Copyright
Copyright © Cambridge University Press 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ABBOTT, L. D., SILVER, E. A., ANDERSON, R. S., SMITH, R., INGLE, J. C., KLING, S. A., HAIG, D., SMALL, E., GALEWSKY, J. & SLITER, W. 1997. Measurement of tectonic surface uplift rate in a young collisional mountain belt. Nature 385:501507.Google Scholar
ANDERSON, M. J., CRIST, T. O., CHASE, J. M., VELLEND, M., INOUYE, B. D., FREESTONE, A. L., SANDERS, N. J., CORNELL, H. V., COMITA, L. S., DAVIES, K. F., HARRISON, S. P., KRAFT, N. J. B., STEGEN, J. C. & SWENSON, N. G. 2010. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters 14:1928.CrossRefGoogle ScholarPubMed
ANDERSON-TEIXEIRA, K. J., DAVIES, S. J., BENNETT, A. C., GONZALEZ-AKRE, E. B., MULLER-LANDAU, H. C., JOSEPH WRIGHT, S., ABU SALIM, K., ALMEYDA ZAMBRANO, A. M., ALONSO, A., BALTZER, J. L., BASSET, Y., BOURG, N. A., BROADBENT, E. N., BROCKELMAN, W. Y., BUNYAVEJCHEWIN, S., BURSLEM, D. F. R. P., BUTT, N., CAO, M., CARDENAS, D., CHUYONG, G. B. et al. 2015. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Global Change Biology 21:528549.Google Scholar
BALDECK, C. A., HARMS, K. E., YAVITT, J. B., JOHN, R., TURNER, B. L., VALENCIA, R., NAVARRETE, H., DAVIES, S. J., CHUYONG, G. B., KENFACK, D., THOMAS, D. W., MADAWALA, S., GUNATILLEKE, N., GUNATILLEKE, S., BUNYAVEJCHEWIN, S., KIRATIPRAYOON, S., YAACOB, A., SUPARDI, M. N. N. & DALLING, J. W. 2013. Soil resources and topography shape local tree community structure in tropical forests. Proceedings of the Royal Society B: Biological Sciences 280:17.Google Scholar
BALZOTTI, C. S., ASNER, G. P., TAYLOR, P. G., COLE, R., OSBORNE, B. B., CLEVELAND, C. C., PORDER, S. & TOWNSEND, A. R. 2017. Topographic distributions of emergent trees in tropical forests of the Osa Peninsula, Costa Rica. Ecography 40:829839.CrossRefGoogle Scholar
BORCARD, D. & LEGENDRE, P. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153:5168.Google Scholar
BORCARD, D., LEGENDRE, P. & DRAPEAU, P. 1992. Partialling out the spatial component of ecological variation. Ecology 73:10451055.Google Scholar
BOUCHER, D. H., VANDERMEER, J. H., GRANZOW DE LA CERDA, I., MALLONA, M. A., PERFECTO, I. & ZAMORA, N. 2001. Post-agriculture versus post-hurricane succession in southeastern Nicaraguan rain forest. Plant Ecology 156:131137.CrossRefGoogle Scholar
BRAY, J. R. & CURTIS, J. T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27:325349.Google Scholar
BRIENEN, R. J. W., PHILLIPS, O. L., FELDPAUSCH, T. R., GLOOR, E., BAKER, T. R., LLOYD, J., LOPEZ-GONZALEZ, G., MONTEAGUDO-MENDOZA, A., MALHI, Y., LEWIS, S. L., VASQUEZ MARTINEZ, R., ALEXIADES, M., ALVAREZ DAVILA, E., ALVAREZ-LOAYZA, P., ANDRADE, A., ARAGAO, L. E. O. C., ARAUJO-MURAKAMI, A., ARETS, E. J. M. M., ARROYO, L., AYMARDC, G. A. C, G. A. et al. 2015. Long-term decline of the Amazon carbon sink. Nature 519: 344348.Google Scholar
BROWN, S. & LUGO, A. E. 1990. Tropical secondary forests. Journal of Tropical Ecology 6:132.CrossRefGoogle Scholar
CHAMBERS, J. Q., NEGRON-JUAREZ, R. I., MARRA, D. M., DI VITTORIO, A., TEWS, J., ROBERTS, D., RIBEIRO, G. H. P. M., TRUMBORE, S. E. & HIGUCHI, N. 2013. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. Proceedings of the National Academy of Sciences USA 110:39493954.CrossRefGoogle ScholarPubMed
CHANG, L., ZELENÝ, D., LI, C., CHIU, S. & HSIEH, C. 2013. Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology 94:21452151.Google Scholar
CHAZDON, R. L. 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology Evolution and Systematics 6:5171.Google Scholar
CHAZDON, R. L. 2008. Chance and determinism in tropical forest succession. Pp. 384408 in Carson, W. P. & Schnitzer, S. A. (eds). Tropical forest community ecology. Wiley-Blackwell, Chichester.Google Scholar
CHAZDON, R. L. 2014. Second growth: the promise of tropical forest regeneration in an age of deforestation. University of Chicago Press, Chicago. 449 pp.CrossRefGoogle Scholar
CHISHOLM, R. A., CONDIT, R., RAHMAN, K. A., BAKER, P. J., BUNYAVEJCHEWIN, S., CHEN, Y.-Y., CHUYONG, G., DATTARAJA, H. S., DAVIES, S., EWANGO, C. E. N., GUNATILLEKE, C. V. S., NIMAL GUNATILLEKE, I. A. U., HUBBELL, S., KENFACK, D., KIRATIPRAYOON, S., LIN, Y., MAKANA, J.-R., PONGPATTANANURAK, N., PULLA, S., PUNCHI-MANAGE, R. et al. 2014. Temporal variability of forest communities: empirical estimates of population change in 4000 tree species. Ecology Letters 17:855865.Google Scholar
CLARK, D. B. 1996. Abolishing virginity. Journal of Tropical Ecology 12:735739.Google Scholar
CLARK, D. A. & CLARK, D. B. 1992. Life history diversity of canopy and emergent trees in a neotropical rain forest. Ecological Monographs 62:315.Google Scholar
CLARK, D. B. & CLARK, D. A. 2000. Landscape-scale variation in forest structure and biomass in a tropical rain forest. Forest Ecology and Management 137:185198.Google Scholar
CONDIT, R. 1995. Research in large, long-term tropical forest plots. Trends in Ecology and Evolution 10:1822.Google Scholar
CONDIT, R. 1997. Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other lots. Springer Verlag, New York. 211 pp.Google Scholar
CONDIT, R., HUBBELL, S. P. & FOSTER, R. B. 1995. Mortality rates of 205 Neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs 65:419439.Google Scholar
CONDIT, R., ASHTON, P. S., MANOKARAN, N., LAFRANKIE, J. V., HUBBELL, S. P. & FOSTER, R. B. 1999. Dynamics of the forest communities at Pasoh and Barro Colorado: comparing two 50–ha plots. Proceedings of the Royal Society B–Biological Sciences 354:17391748.Google Scholar
CONDIT, R., ASHTON, P., BUNYAVEJCHEWIN, S., DATTARAJA, H. S., DAVIES, S., ESUFALI, S., EWANGO, C., FOSTER, R., GUNATILLEKE, I. A. U. N., GUNATILLEKE, C. V. S., HALL, P., HARMS, K. E., HART, T., HERNANDEZ, C., HUBBELL, S., ITOH, A., KIRATIPRAYOON, S., LAFRANKIE, J., DE LAO, S. L., MAKANA, J. R. et al. 2006. The importance of demographic niches to tree diversity. Science 313:98101.CrossRefGoogle ScholarPubMed
CONDIT, R., ENGELBRECHT, B. M. J., PINO, D., PÉREZ, R. & TURNER, B. L. 2013. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences USA 110:50645068.CrossRefGoogle ScholarPubMed
CONDIT, R., PÉREZ, R., LAO, S., AGUILAR, S. & HUBBELL, S. P. 2017. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. Forest Ecosystems 4:1730.Google Scholar
CONNELL, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:13021310.Google Scholar
COOMES, D. A. & ALLEN, R. B. 2007. Mortality and tree-size distributions in natural mixed-age forests. Journal of Ecology 95:2740.Google Scholar
DE CÁCERES, M., LEGENDRE, P. & MORETTI, M. 2010. Improving indicator species analysis by combining groups of sites. Oikos 119:16741684.Google Scholar
DIXON, R. K., SOLOMON, A. M., BROWN, S., HOUGHTON, R. A., TREXIER, M. C. & WISNIEWSKI, J. 1994. Carbon pools and flux of global forest ecosystems. Science 263:185190.Google Scholar
DOUGHTY, C. E., METCALFE, D. B., GIRARDIN, C. A. J., AMEZQUITA, F. F., CABRERA, D. G., HUASCO, W. H., SILVA-ESPEJO, J. E., ARAUJO-MURAKAMI, A., DA COSTA, M. C., ROCHA, W., FELDPAUSCH, T. R., MENDOZA, A. L. M., DA COSTA, A. C. L., MEIR, P., PHILLIPS, O. L. & MALHI, Y. 2015. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519:78–U140.Google Scholar
DRAY, S., LEGENDRE, P. & PERES-NETO, P. R. 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196:483493.CrossRefGoogle Scholar
DUFRÊNE, M. & LEGENDRE, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67:345366.Google Scholar
FEELEY, K. J., DAVIES, S. J., ASHTON, P. S., BUNYAVEJCHEWIN, S., NUR SUPARDI, M. N., KASSIM, A. R., TAN, S. & CHAVE, J. 2007. The role of gap phase processes in the biomass dynamics of tropical forests. Proceedings of the Royal Society B–Biological Sciences 274:28572864.Google Scholar
FOODY, G. M., BOYD, D. S. & CUTLER, M. E. J. 2003. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment 85:463474.Google Scholar
FRANKLIN, J. F., SPIES, T. A., PELT, R. V., CAREY, A. B., THORNBURGH, D. A., BERG, D. R., LINDENMAYER, D. B., HARMON, M. E., KEETON, W. S., SHAW, D. C., BIBLE, K. & CHEN, J. 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management 155: 399423.Google Scholar
GARWOOD, N. C., JANOS, D. P. & BROKAW, N. 1979. Earthquake-caused landslides: a major disturbance to tropical forests. Science 205:997999.Google Scholar
GUARIGUATA, M. R. 1990. Landslide disturbance and forest regeneration in the Upper Luquillo Mountains of Puerto Rico. Journal of Ecology 78:814832.Google Scholar
GUARIGUATA, M. R. & OSTERTAG, R. 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148:185206.Google Scholar
HARMS, K., CONDIT, R. & HUBBELL, S. 2001. Habitat associations of trees and shrubs in a 50-ha Neotropical forest plot. Journal of Ecology 89:947959.CrossRefGoogle Scholar
HENDERSHOT, W. H., LALANDE, H. & DUQUETTE, M. 2008. Ion exchange and exchangeable cations. Pp. 197206 in Carter, M. R. & Gregorich, E. G. (eds). Soil sampling and methods of analysis. (Second edition). CRC Press, Oxford.Google Scholar
HIETZ, P., TURNER, B. L., WANEK, W., RICHTER, A., NOCK, C. A. & WRIGHT, S. J. 2011. Long-term change in the nitrogen cycle of tropical forests. Science 334:664666.Google Scholar
ITOH, A., NANAMI, S., HARATA, T., OHKUBO, T., TAN, S., CHONG, L., DAVIES, S. J. & YAMAKURA, T. 2012. The effect of habitat association and edaphic conditions on tree mortality during El Niño-induced drought in a Bornean dipterocarp forest. Biotropica 44:606617.Google Scholar
JOHN, R., DALLING, J. W., HARMS, K. E., YAVITT, J. B., STALLARD, R. F., MIRABELLO, M., HUBBELL, S. P., VALENCIA, R., NAVARRETE, H., VALLEJO, M. & FOSTER, R. B. 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences USA 104:864869.Google Scholar
JOHNS, R. J. 1986. The instability of the tropical ecosystem in New Guinea. Blumea 31:341371.Google Scholar
KELLNER, J. R., CLARK, D. B. & HUBBELL, S. P. 2009. Pervasive canopy dynamics produce short-term stability in a tropical rain forest landscape. Ecology Letters 12:155164.Google Scholar
KING, D. A., DAVIES, S. J. & NOOR, N. S. M. 2006. Growth and mortality are related to adult tree size in a Malaysian dipterocarp forest. Forest Ecology and Management 223:152158.Google Scholar
LAURANCE, W. F., FEARNSIDE, P. M., LAURANCE, S. G., DELAMONICA, P., LOVEJOY, T. E., RANKIN-DE MERONA, J. M., CHAMBERS, J. Q. & GASCON, C. 1999. Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecology and Management 118:127138.Google Scholar
LAWTON, R. & PUTZ, F. E. 1988. Natural disturbance and gap-phase regeneration in a wind-exposed tropical cloud forest. Ecology 69:764777.Google Scholar
LEBRIJA-TREJOS, E., BONGERS, F., PÉREZ-GARCÍA, E. A. & MEAVE, J. A. 2008. Successional change and eesilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 40:422431.Google Scholar
LEGENDRE, P., BORCARD, D. & PERES-NETO, P. R. 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75:435450.Google Scholar
LEGENDRE, P., MI, X., REN, H., MA, K., YU, M., SUN, I. F. & HE, F. 2009. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663674.Google Scholar
LEIBOLD, M. A., CHASE, J. M. & ERNEST, S. K. M. 2017. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 98:909919.Google Scholar
LETCHER, S. G. 2010. Phylogenetic structure of angiosperm communities during tropical forest succession. Proceedings of the Royal Society B–Biological Sciences 277:97104.Google Scholar
LEVIS, C., COSTA, F. R. C., BONGERS, F., PEÑA-CLAROS, M., CLEMENT, C. R., JUNQUEIRA, A. B., NEVES, E. G., TAMANAHA, E. K., FIGUEIREDO, F. O. G., SALOMÃO, R. P., CASTILHO, C. V., MAGNUSSON, W. E., PHILLIPS, O. L., GUEVARA, J. E., SABATIER, D., MOLINO, J.-F., LÓPEZ, D. C., MENDOZA, A. M., PITMAN, N. C. A., DUQUE, A. et al. 2017. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355:925931.Google Scholar
LEWIS, S. L., PHILLIPS, O. L., SHEIL, D., VINCETI, B., BAKER, T. R., BROWN, S., GRAHAM, A. W., HIGUCHI, N., HILBERT, D. W., LAURANCE, W. F., LEJOLY, J., MALHI, Y., MONTEAGUDO, A., VARGAS, P. N., SONKE, B., SUPARDI, N., TERBORGH, J. W. & MARTINEZ, R. V. 2004. Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. Journal of Ecology 92:929944.Google Scholar
LI, L., HUANG, Z., YE, W., CAO, H., WEI, S., WANG, Z., LIAN, J., SUN, I. F., MA, K. & HE, F. 2009. Spatial distributions of tree species in a subtropical forest of China. Oikos 118:495502.Google Scholar
LOFFLER, E. 1977. Geomorphology of Papua New Guinea. Angus and Robertson (S.E. Asia) Pty Ltd, Singapore. 195 pp.Google Scholar
MARON, J. L. & CRONE, E. 2006. Herbivory: effects on plant abundance, distribution and population growth. Proceedings of the Royal Society B–Biological Sciences 273:25752584.Google Scholar
MARTINEZ-RAMOS, M., ALVAREZ-BUYLLA, E., SARUKHAN, J. & PINERO, D. 1988. Treefall age determination and gap dynamics in a tropical forest. Journal of Ecology 76:700716.Google Scholar
MITTERMEIER, R. A., MYERS, N., THOMSEN, J. B., DA FONSECA, G. A. B. & OLIVIERI, S. 1998. Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conservation Biology 12:516520.Google Scholar
MOLINO, J. & SABATIER, D. 2001. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294:17021704.Google Scholar
NELSON, R. F., KIMES, D. S., SALAS, W. A. & ROUTHIER, M. 2000. Secondary forest age and tropical forest biomass estimation using thematic mapper imagery: single-year tropical forest age classes, a surrogate for standing biomass, cannot be reliably identified using single-date tm imagery. BioScience 50:419431.Google Scholar
NEPSTAD, D. C., UHL, C., PEREIRA, C. A. & SILVA, J. M. C. D. 1996. A comparative study of tree establishment in abandoned pasture and mature forest of eastern Amazonia. Oikos 76:2539.Google Scholar
ØKLAND, R. H. 1999. On the variation explained by ordination and constrained ordination axes. Journal of Vegetation Science 10:131136.Google Scholar
PERES-NETO, P. R., LEGENDRE, P., DRAY, S. & BORCARD, D. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:26142625.Google Scholar
PHILLIPS, O. L., HALL, P., GENTRY, A. H., SAWYER, S. A. & VÁSQUEZ, R. 1994. Dynamics and species richness of tropical rain forests. Proceedings of the National Acadamy of Science USA 91:28052809.Google Scholar
PHILLIPS, O. L., MALHI, Y., HIGUCHI, N., LAURANCE, W. F., NÚÑEZ, P. V., VÁSQUEZ, R. M., LAURANCE, S. G., FERREIRA, L. V., STERN, M., BROWN, S. & GRACE, J. 1998. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439442.Google Scholar
RUSSO, S. E., DAVIES, S. J., KING, D. A. & TAN, S. 2005. Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology 93:879889.Google Scholar
RUXTON, B. P. 1967. Slopewash under mature primary rainforest in northern Papua. Pp. 8594 in Jennings, J. N. & Mabbutt, J. A. (eds). Landform studies from Australia and New Guinea. Cambridge University Press, Cambridge.Google Scholar
SADER, S. A., WAIDE, R. B., LAWRENCE, W. T. & JOYCE, A. T. 1989. Tropical forest biomass and successional age class relationships to a vegetation index derived from landsat data. Remote Sensing of Environment 28:143198.Google Scholar
SCHIMEL, D. S. 1995. Terrestrial ecosystems and the carbon cycle. Global Change Biology 1:7791.Google Scholar
SHEARMAN, P. L., ASH, J., MACKEY, B., BRYAN, J. E. & LOKES, B. 2009. Forest conversion and degradation in Papua New Guinea 1972–2002. Biotropica 41:379390.Google Scholar
SHEN, Y., SANTIAGO, L. S., MA, L., LIN, G.-J., LIAN, J.-Y., CAO, H.-L. & YE, W.-H. 2013. Forest dynamics of a subtropical monsoon forest in Dinghushan, China: recruitment, mortality and the pace of community change. Journal of Tropical Ecology 29:131145.Google Scholar
STEPHENSON, N. L. & MANTGEM, P. J. 2005. Forest turnover rates follow global and regional patterns of productivity. Ecology Letters 8:524531.Google Scholar
THESSLER, S., RUOKOLAINEN, K., TUOMISTO, H. & TOMPPO, E. 2005. Mapping gradual landscape-scale floristic changes in Amazonian primary rain forests by combining ordination and remote sensing. Global Ecology and Biogeography 14:315325.Google Scholar
TUOMISTO, H., RUOKOLAINEN, K., VORMISTO, J., DUQUE, A., SÁNCHEZ, M., PAREDES, V. V. & LÄHTEENOJA, O. 2017. Effect of sampling grain on patterns of species richness and turnover in Amazonian forests. Ecography 40:840852.Google Scholar
TURNER, I. M., WONG, Y. K., CHEW, P. T. & IBRAHIM, A. 1997. Tree species richness in primary and old secondary tropical forest in Singapore. Biodiversity and Conservation 6:537543.Google Scholar
UNGER, M., HOMEIER, J. & LEUSCHNER, C. 2012. Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia 170:263274.Google Scholar
URIARTE, M., CONDIT, R., CANHAM, C. D. & HUBBELL, S. P. 2004. A spatially explicit model of sapling growth in a tropical forest: does the identity of neighbours matter? Journal of Ecology 92: 348360.Google Scholar
VINCENT, J. B., HENNING, B., SAULEI, S., SOSANIKA, G. & WEIBLEN, G. D. 2015. Forest carbon in lowland Papua New Guinea: local variation and the importance of small trees. Austral Ecology 40:151159.Google Scholar
WHITFELD, T. J. S., KRESS, W. J., ERICKSON, D. L. & WEIBLEN, G. D. 2012. Change in community phylogenetic structure during tropical forest succession: evidence from New Guinea. Ecography 35:110.Google Scholar
WHITFELD, T. J. S., LASKY, J. R., DAMAS, K., SOSANIKA, G., MOLEM, K. & MONTGOMERY, R. A. 2014. Species richness, forest structure, and functional diversity during succession in the New Guinea lowlands. Biotropica 46:538548.Google Scholar
WHITMORE, T. C. 1990. An introduction to tropical rainforests. Oxford University Press, Oxford. 226 pp.Google Scholar
WHITMORE, T. C. 1991. Tropical rain forest dynamics and its implications for management. Pp. 6790 in Gomez-Pompa, A., Whitmore, T. C. & Hadley, M. (eds). Rain forest regeneration and management. UNESCO/Parthenon Publishing, Paris.Google Scholar
WRIGHT, S. J. 2005. Tropical forests in a changing environment. Trends in Ecology and Evolution 20:553560.Google Scholar
WRIGHT, S. J., KITAJIMA, K., KRAFT, N. J. B., REICH, P. B., WRIGHT, I. J., BUNKER, D. E., CONDIT, R., DALLING, J. W., DAVIES, S. J., DIAZ, S., ENGELBRECHT, B. M. J., HARMS, K. E., HUBBELL, S. P., MARKS, C. O., RUIZ-JAEN, M. C., SALVADOR, C. M. & ZANNE, A. E. 2010. Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91:36643674.Google Scholar
YAP, S. L., DAVIES, S. J. & CONDIT, R.. 2016. Dynamic response of a Philippine dipterocarp forest to typhoon disturbance. Journal of Vegetation Science 27:133143.Google Scholar