Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T18:29:18.734Z Has data issue: false hasContentIssue false

Termite diversity and abundance across fire-induced habitat variability in a tropical moist savanna (Lamto, Central Côte d'Ivoire)

Published online by Cambridge University Press:  30 March 2010

Kanvaly Dosso*
Affiliation:
Station d'écologie de Lamto, UFR des Sciences de la Nature, Université d'Abobo-Adjamé (Abidjan), Côte d'Ivoire
Souleymane Konaté
Affiliation:
Station d'écologie de Lamto, UFR des Sciences de la Nature, Université d'Abobo-Adjamé (Abidjan), Côte d'Ivoire
Daouda Aidara
Affiliation:
Station d'écologie de Lamto, UFR des Sciences de la Nature, Université d'Abobo-Adjamé (Abidjan), Côte d'Ivoire
K. E. Linsenmair
Affiliation:
Department of Animal Ecology and Tropical Biology, University of Würzburg, Germany
*
1Corresponding address: BP 28 N'Douci, Côte d'Ivoire. Email: [email protected]

Abstract:

At Lamto, little is known about animal community responses to habitat variability resulting from fires and the mosaic pattern of the vegetation in general and in particular about that of termites which play key roles in this ecosystem. With a standardized method, data were collected on termites from four habitats differing in their vegetation cover and fire-history: annually burned savanna, savanna woodland, forest island and gallery forest. A range of environmental variables was measured and correlated with species abundances. The number of termite species collected in the savanna woodland was very close to that found in the gallery forest while the forest island was the richest habitat. The species richness of the savanna woodland and forest island seemed partly due to their heterogeneous and transitional vegetation structures and variable food resources. With regard to the fire-history of habitats, Connell's intermediate disturbance hypothesis offers an explanation for differences in the patterns of habitat-specific species richness. Variation in species abundances was significantly correlated with only two environmental variables (soil pH and woody plant species richness). The pH appeared as the most influential factor for fungus-growers while tree invasion in the savanna strongly reduces the abundance of grass-feeding species (e.g. Trinervitermes geminatus). Although not significantly correlated with species abundances, soil carbon showed a positive correlation with the dominant soil-feeder Basidentitermes potens. As for wood-feeders, they were not strongly correlated with woody plant species richness; this fact might be linked to their use for other sources of nourishment. Overall, it appears that habitat variability in the Lamto reserve contributes to the maintenance of different subsets of the termite community.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ABBADIE, L. & NACRO, H. B. 2006. Origin, distribution and composition of organic matter. Pp. 201214 in Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. (eds.). Lamto: structure, functioning and dynamics of a savanna ecosystem. Springer Verlag, New York.Google Scholar
ABBADIE, L., GIGNOUX, J., LE ROUX, X. & LEPAGE, M. 2006. Lamto: structure, functioning and dynamics of a savanna ecosystem. Springer Verlag, New York. 412 pp.Google Scholar
AFNOR, 1996. Qualité des sols. Recueil de normes françaises. (Third edition). La Défense, Paris. 534 pp.Google Scholar
ANDERSEN, A. N. 1991. Sampling communities of ground-foraging ants: pitfall catches compared with quadrat counts in an Australian tropical savanna. Australian Journal of Ecology 16:273279.Google Scholar
ANDERSON, J. M. & INGRAM, J. S. I. 1993. Tropical soil biology and fertility. A handbook of methods. CAB International, Wallingford. 221 pp.Google Scholar
BAIZE, D. 2000. Guide des analyses en pédologie: techniques et pratiques. Editions INRA, Paris. 260 pp.Google Scholar
BOND, W. J. 1997. Fire. Pp. 421446 in Cowling, R. M., Richardson, R. M. & Pierce, S. (eds.). Vegetation of Southern Africa. Cambridge University Press, Cambridge.Google Scholar
BOUILLON, A. & MATHOT, G. 1965. Quel est ce termite Africain? Université de Léopoldville, Léopoldville. 115 pp.Google Scholar
BOUILLON, A. & MATHOT, G. 1966. Quel est ce termite africain? Supplément N° 1. Université Lovanium, Kinshassa. 23 pp.Google Scholar
BOUILLON, A. & MATHOT, G. 1971. Quel est ce termite africain? Supplément N°2. Université Nationale du Zaïre, Kinshassa. 48 pp.Google Scholar
BOULINIER, T., NICHOLS, J. D., SAUER, J. R., HINE, J. E. & POLLOCK, K. H. 1998. Estimating species richness: the importance of heterogeneity in species detectability. Ecology 79:10181028.Google Scholar
BOYER, P. 1973. Action de certains termites constructeurs sur l'évolution des sols tropicaux. Annales des Sciences Naturelles, Zoologie, Paris 12:329498.Google Scholar
BRAUMANN, A., BIGNELL, D. E. & TAYASU, I. 2000. Soil-feeding termites: biology, microbial associations and digestive mechanisms. Pp. 233259 in Abe, T., Bignell, D. E. & Higashi, M. (eds.). Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
CAO, Y., WILLIAMS, D. D. & LARSEN, P. D. 2002. Comparison of ecological communities: the problem of sample representativeness. Ecological Monogaphs 72:313318.Google Scholar
COLWELL, R. K. & CODDINGTON, J. A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions Royal Society, London B 345:101118.Google ScholarPubMed
CONNELL, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:13021310.Google Scholar
DAVIES, R. G. 1997. Termite species richness in fire-prone and fire protected dry deciduous dipterocarp forest in Doi Suthep-Pui National Park, Northern Thailand. Journal of Tropical Ecology 13:153160.Google Scholar
DELIGNE, J. 1966. Caractères adaptatifs au régime alimentaire dans la mandibule des termites (Insectes Isoptères). Compte rendu d'Académie des Sciences, Paris 263:13231325.Google Scholar
EGGLETON, P., BIGNELL, D. E., HAUSER, S., DIBOG, L., NORGROVE, L. & MADONG, B. 2002. Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agriculture, Ecosystems & Environment 9:189202.Google Scholar
FARJI-BRENER, A. G., CORLEY, J. C. & BETTINELLI, J. 2002. The effects of fire on ant communities in north-western Patagonia: the importance of habitat structure and regional context. Diversity & Distributions 8:235243.Google Scholar
FRESON, R., GOFFINET, G. & MALAISSE, F. 1974. Ecological effects of the regressive succession muhulu-miombo-savanna in Upper Shaba, Zaire. Pp. 365371 in First International Congress of Ecology (ed.). Structure, functioning and management of ecosystems. PUDOC, Wageningen.Google Scholar
GAUTIER, L. 1990. Contact forêt-savane en Côte d'Ivoire centrale: évolution du recouvrement ligneux des savanes de la réserve de Lamto (sud du V Baoulé). Candollea 45:627641.Google Scholar
GIGNOUX, J. 1994. Modélisation de la coexistence herbes/arbres en savane. Thèse de l'INA Paris-Grignon. 175 pp.Google Scholar
GILLISON, A. N., JONES, D. T., SUSILO, F. X. & BIGNELL, D. E. 2003. Vegetation indicates diversity of soil macroinvertebrates: a case study with termites along a land-use intensification gradient in lowland Sumatra. Organisms Diversity and Evolution 3:111126.Google Scholar
GILLON, D. 1983. The fire problem in tropical savannas. Pp. 617641 in Bourlière, F. (ed.) Tropical savannas. Elsevier, Amsterdam.Google Scholar
GRASSÉ, P. P. 1986. Comportement, socialité, écologie, évolution, systématique. Termitologia. Tome III. Masson, Paris. 715 pp.Google Scholar
HIEN, F. 1995. La régénération de l'espace sylvo-pastoral au Sahel. Une étude de l'effet de mesures de conservation des eaux et sol au Burkina Faso. Document sur la gestion des ressources tropicales. Thèse de Doctorat. Wageningen Agricultural University. Wageningen. 223 pp.Google Scholar
HOFFMANN, B. D. 2003. Responses of ant communities to experimental fire regimes on rangelands in the Victoria River District of the Northern Territory. Austral Ecology 28:182195.Google Scholar
HOLT, J. A. & LEPAGE, M. 2000. Termites and soil properties. Pp. 389407 in Abe, T., Bignell, D. E. & Higashi, M. (eds.). Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic Publishers, Dordrecht.Google Scholar
JONES, D. T. & EGGLETON, P. 2000. Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. Journal of Applied Ecology 37:191203.Google Scholar
JONES, D. T., LAWTON, J. H. & SHACHAK, M. 1994. Organisms as ecosystem engineers. Oikos 69:373386.Google Scholar
JONES, D. T., SUSILO, F.-X., BIGNELL, D. E., SURYO, H., GILLISON, A. N. & EGGLETON, P. 2003. Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. Journal of Applied Ecology 40:380391.CrossRefGoogle Scholar
JOSENS, G. 1972. Etudes biologiques et écologiques des termites (Isoptera) de la savane de Lamto. Thèse de doctorat de l'Université Libre de Bruxelles. 262 pp.Google Scholar
JOSENS, G. 1974. Etude fonctionnelle de quelques animaux: les termites. Bulletin de Liaison des Chercheurs de Lamto, Numéro spécial 91–131.Google Scholar
JOSENS, G. 1983. The soil fauna 3: the termites. Pp. 505524 in Bourlière, F. (ed.). The tropical savannas. Elsevier, Amsterdam.Google Scholar
KONATÉ, S. 1998. Structure dynamique et rôle des buttes termitiques dans le fonctionnement d'une savane préforestière (Lamto, Côte d'Ivoire): le termite champignonniste Odontotermes comme ingénieur de l'écosystème. Thèse de doctorat de l'Université Paris 6. 252 pp.Google Scholar
KONATÉ, S., LE ROUX, X., TESSIER, D. & LEPAGE, M. 1999. Influence of large termitaria on soil characteristics, soil water regime, and tree leaf shedding pattern in a West African savanna. Plant and Soil 206:4760.Google Scholar
KONATÉ, S., LE ROUX, X., VERDIER, D. & LEPAGE, M., 2003. Effect of underground fungus-growing termites on carbon dioxide emission at the point and landscape scales in an African savanna. Functional Ecology 17:305314.Google Scholar
KONATÉ, S., YEO, K., YOBOUET, L., ALONSO, L. E. & KOUASSI, K. 2005. Evaluation rapide de la diversité des insectes des forêts classées de la Haute Dodo et du Cavally (Côte d'Ivoire). Pp. 3949 in Alonso, L. L., Lauginie, F. & Rondeau, G. (eds). Evaluation biologique de deux forêts classées du sud-ouest de la Côte d'Ivoire. RAP Bulletin of Biological Assessment 34. Washington, DC.Google Scholar
LAWTON, J. H. 1983. Plant architecture and the diversity of phytophagous insects. Annual Review of Entomology 28:2339.Google Scholar
LE ROUX, X., GIGNOUX, J. & SIMIONI, G. 2006. Modeling the relationships between vegetation structure and functioning and savanna functioning from plot region. Pp. 163181 in Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. (eds.). Lamto: structure, functioning and dynamics of a savanna ecosystem. Springer Verlag, New York.Google Scholar
LEE, K. E. & WOOD, T. G. 1971. Termites and soils. Academic Press, London. 251 pp.Google Scholar
MAGURRAN, A. E. 2004. Measuring biological diversity. Blackwell Science Ltd., Oxford. 256 pp.Google Scholar
MCCOY, E. D. & BELL, S. S. 1991. Habitat structure: the evolution and diversification of a complex topic. Pp. 327 in Bell, S. S., McCoy, E. D. & Mushinsky, H. R. (eds.) Habitat structure: the physical arrangement of objects in space. Chapman & Hall, London.CrossRefGoogle Scholar
MÉNAUT, J. C. 1971. Etude de quelques peuplements ligneux d'une savane guinéenne de Côte d'Ivoire. Thèse de doctorat 3ème cycle à la Faculté des sciences de Paris. 141 pp.Google Scholar
MÉNAUT, J. C. 1983. The vegetation of African savannas. Pp. 109149 in Boulière, F. (ed.). The tropical savannas. Elsevier, Amsterdam.Google Scholar
MÉNAUT, J. C. & ABBADIE, L. 2006. Vegetation. Pp. 6372 in Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. (eds.). Lamto: structure, functioning and dynamics of a savanna ecosystem. Springer Verlag, New York.Google Scholar
MÉNAUT, J. C. & CESAR, J. 1979. Structure and primary productivity of Lamto savannas (Ivory Coast). Ecology 60:11971210.CrossRefGoogle Scholar
MÉNAUT, J. C. & CESAR, J. 1982. Structure and dynamics of a West African savanna. Pp. 81102 in Huntley, B. J. & Huntley, B. H. (eds.). Ecology of tropical savannas. Springer Verlag, Berlin.Google Scholar
MÉNAUT, J. C., GIGNOUX, J., PRADO, C., & CLOBERT, J. 1990. Modeling tree community dynamics in a humid savanna of Côte d'Ivoire: effects of fire and competition with grass and neighbors. Journal of Biogeography 17:471481.Google Scholar
MONNIER, Y. 1968. Les effets du feu de brousse sur une savane préforestière de Côte d'Ivoire. Etudes Eburnéennes. 240 pp.Google Scholar
MORDELET, P. 1993. Influence of tree shading on carbon assimilation of grass leaves in Lamto savanna, Côte d'Ivoire. Acta Oecologica 14:119127.Google Scholar
PARR, C. L. & CHOWN, S. L. 2003. Burning issues for conservation: a critique of faunal fire research in Southern Africa. Austral Ecology 28:384395.Google Scholar
PARR, C. L., BOND, W. L. & ROBERTSON, H. 2002. A preliminary study of the effect of fire on ants (Hymenoptera: Formicidae) in a South African savanna. African Entomology 10:101111.Google Scholar
PARR, C. L., ROBERTSON, H., BIGGS, H. C. & CHOWN, S. L. 2004. Response of African savanna ants to long-term fire regimes. Journal of Applied Ecology 41:630642.Google Scholar
PIROVANO, C. 1996. Studio di dinamiche del carbonio e dell'azoto in suoli tropicali sotto savanna e sotto foresta in Costa d'Avorio. Laurea in science ambientali, Università degli Studi di Milano.Google Scholar
RAMANKUTTY, N. & FOLEY, J. A. 1999. Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochemical Cycles 13:9971027.Google Scholar
ROISIN, Y. & LEPONCE, M. 2004. Characterizing termite assemblages in fragmented forests: a test case in the Argentinian Chaco. Austral Ecology 29:637646.Google Scholar
SANDS, W. A. 1998. The identification of worker castes of termite genera from soils of Africa and the Middle East. CAB International, New York. 500 pp.Google Scholar
SANKARAN, M., HANAN, N. P., ACHOLES, R. J., RATNAM, J., AUGUSTINE, D. J., CADE, B. S., GIGNOUX, J., HIGGINS, S. I., LE ROUX, X., LUDWIG, F., ARDO, J., BANYIKWA, F., BROON, F., BUCINNI, G., CAYLOR, K. K., COUGHENOUR, M. B., DIOUF, A., EKAYA, W., FERAL, C. J., FEBRUARY, E. C., FROST, P. G. H., HIERNAUX, P., HRABAR, H., METZGER, K. L., PRINS, H. H. T., RINGROSE, S., SEA, W., TEWS, J., WORDEN, J. & ZAMBATIS, N. 2005. Determinants of woody cover in African savannas: a continental scale analysis. Nature 438:846849.Google Scholar
SANKARAN, M., RATNAM, J. & HANAN, N. 2008. Woody cover in African savannas: the role of resources, fire and herbivory. Global Ecology and Biogeography 17:236245.Google Scholar
SCHOLES, R. J. & WALKER, B. H. 1993. An African savanna: synthesis of the Nylsvley study. Cambridge University Press, Cambridge. 318 pp.Google Scholar
TAINTON, N. M. & MENTIS, M. T. 1984. Fire in grassland. Pp. 115148 in Booysen, P. de V. & Tainton, N. M. (eds.). Ecological effects of fire in South African ecosystems. Springer Verlag, New York.CrossRefGoogle Scholar
TANO, Y. 1993. Les termitières épigées d'un basin versant en savane soudanienne: répartition et dynamique des nids, rôle sur les sols et sur la végétation. Thèse d'Etat ès Sciences, Université Nationale de Côte d'Ivoire, Abidjan. 250 pp.Google Scholar
TER BRAAK, C. J. F. & SMILAUER, P. 2002. Canoco reference manual and CanoDraw for Windows user's guide: Software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca. 500 pp.Google Scholar
TEWS, J., BROSE, U., GRIMM, V., TIELBÖRGER, K., WICHMANN, M. C., SCHWAGER, M. & JELTSCH, F. 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31:7992.CrossRefGoogle Scholar
TROLLOPE, W. S. W. 1984. Fire in savanna. Pp. 151175 in de V. Booysen, P. & Tainton, N. M. (eds.). Ecological effects of fire in South African ecosystems. Springer Verlag, New York.Google Scholar
TROLLOPE, W. S. W., TROLLOPE, L. A., BIGGS, H. C., PIENAAR, D. & POTGIETER, A. L. F. 1998. Long term changes in woody vegetation of Kruger National Park with special reference to the effects of elephants and fire. Koedoe 41:103112.Google Scholar
VANE-WRIGHT, R. I., HUMPHRIES, C. J. & WILLIAMS, P. H. 1991. What to protect? Systematics and the agony of choice. Biological Conservation 55:235254.Google Scholar
VAN LANGEVELDE, F., VAN DE VIJVER, C. A. D. M., KUMAR, L., VAN DE KOPPEL, J., DE RIDDER, N., VAN ANDEL, J., SKIDMORE, A. K., HEARNE, J. W., STROOSNIJDER, L., BOND, W. J., PRINS, H. H. T. & RIETKERK, M. 2003. Effects of fire and herbivory on the stability of savanna ecosystems. Ecology 84:337350.Google Scholar
VUATTOUX, R. 1970. Observations sur l'évolution des strates arborée et arbustive dans la savane de Lamto (Côte d'Ivoire). Annales de l'Université d'Abidjan, série E 3:285315.Google Scholar
VUATTOUX, R. 1976. Contribution à l'étude de l'évolution des strates arborée et arbustive dans la savane de Lamto (Côte d'Ivoire). Deuxième note. Annales de l'Université d'Abidjan, série C 7:3563.Google Scholar
WATSON, J. P. 1977. The use of mounds of the termite Macrotermes falciger (Gerstacker) as a soil amendement. Journal of Soil Science 28:664672.Google Scholar
WEBB, G. C. 1961. Keys of the genera of the African termites adapted from revision Der Termiten Afrikas of Sjöestedt. Ibadan University Press, Ibadan. 35 pp.Google Scholar
WOOD, T. G. & SANDS, W. A. 1978. The role of termites in ecosystems. Pp. 245292 in Brian, M. V. (ed.). Production ecology of ants and termites. Cambridge University Press, Cambridge.Google Scholar