Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T10:48:06.037Z Has data issue: false hasContentIssue false

Seasonality of above-ground net primary productivity along an Andean altitudinal transect in Peru

Published online by Cambridge University Press:  28 August 2014

C. A. J. Girardin*
Affiliation:
Environmental Change Institute, School of Geography and the Environment, Oxford University, South Parks Road, Oxford OX1 3QY, UK
Y. Malhi
Affiliation:
Environmental Change Institute, School of Geography and the Environment, Oxford University, South Parks Road, Oxford OX1 3QY, UK
K. J. Feeley
Affiliation:
Department of Biological Sciences, Florida International University, Miami, USA
J. M. Rapp
Affiliation:
Tufts University, Department of Biology, 163 Packard Avenue, Medford, MA 02155, USA
M. R. Silman
Affiliation:
Wake Forest University, Department of Biology and Centre for Energy, Environment, and Sustainability, 1834 Wake Forest Road, Winston-Salem, NC, USA
P. Meir
Affiliation:
Edinburgh University, School of Geosciences, West Mains Road, Edinburgh EH9 3JN, UK
W. Huaraca Huasco
Affiliation:
Universidad San Antonio Abad, Cusco, Peru
N. Salinas
Affiliation:
Environmental Change Institute, School of Geography and the Environment, Oxford University, South Parks Road, Oxford OX1 3QY, UK Universidad San Antonio Abad, Cusco, Peru
M. Mamani
Affiliation:
Universidad San Antonio Abad, Cusco, Peru
J. E. Silva-Espejo
Affiliation:
Universidad San Antonio Abad, Cusco, Peru
K. García Cabrera
Affiliation:
Wake Forest University, Department of Biology and Centre for Energy, Environment, and Sustainability, 1834 Wake Forest Road, Winston-Salem, NC, USA
W. Farfan Rios
Affiliation:
Wake Forest University, Department of Biology and Centre for Energy, Environment, and Sustainability, 1834 Wake Forest Road, Winston-Salem, NC, USA
D. B. Metcalfe
Affiliation:
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
C. E. Doughty
Affiliation:
Environmental Change Institute, School of Geography and the Environment, Oxford University, South Parks Road, Oxford OX1 3QY, UK
L. E. O. C. Aragão
Affiliation:
School of Geography, University of Exeter, Rennes Drive, Exeter EX4 4RJ, UK
*
1Corresponding author. Email: [email protected]

Abstract:

Solar irradiance and precipitation are the most likely drivers of the seasonal variation of net primary productivity (NPP) in tropical forests. Since their roles remain poorly understood, we use litter traps, dendrometer bands and census data collected from one hectare permanent plots to quantify the seasonality of above-ground NPP components and weather parameters in 13 sites distributed along a 2800-m altitudinal gradient ranging from lowland Amazonia to the high Andes. We combine canopy leaf area index and litterfall data to describe the seasonality of canopy production. We hypothesize that solar irradiance is the primary driver of canopy phenology in wetter sites, whereas precipitation drives phenology in drier systems. The seasonal rhythm of canopy NPP components is in synchrony with solar irradiance at all altitudes. Leaf litterfall peaks in the late dry season, both in lowland (averaging 0.54 ± 0.08 Mg C ha y−1, n = 5) and montane forests (averaging 0.29 ± 0.04 Mg C ha y−1, n = 8). Peaks in above-ground coarse woody NPP appears to be triggered by the onset of rainfall in seasonal lowland rain forests (averaging 0.26 ± 0.04 Mg C ha y−1, n = 5, in November), but not in montane cloud forests.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ARAGÃO, L. E. O. C., MALHI, Y., METCALFE, D. B., SILVA-ESPEJO, J. E., JIMENEZ, E., NAVARRETE, D., ALMEIDA, S., COSTA, A. C. L., SALINAS, N., PHILLIPS, O. L., ANDERSON, L. O., ALVAREZ, E., BAKER, T. R., GONCALVEZ, P. H., HUAMAN-OVALLE, J., MAMANI-SOLORZANO, M., MEIR, P., MONTEAGUDO, A., PATIÑO, S., PEÑUELA, M. C., PRIETO, A., QUESADA, C. A., ROZAS-DAVILA, A., RUDAS, A., SILVA, J. R. & VASQUEZ, R. 2009. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6:24412488.CrossRefGoogle Scholar
BORCHERT, R. 1983. Phenology and control of flowering in tropical trees. Biotropica 15:8189.CrossRefGoogle Scholar
BORCHERT, R., MEYER, S. A., FELGER, R. S. & PORTER-BOLLAND, L. 2004. Environmental control of flowering periodicity in Costa Rican and Mexican tropical dry forests. Global Ecology and Biogeography 13:409425.CrossRefGoogle Scholar
BORCHERT, R., RENNER, S. S., CALLE, Z., NAVARRETE, D., TYE, A., GAUTIER, L., SPICHIGER, R. & VON HILDEBRAND, P. 2005. Photoperiodic induction of synchronous flowering near the equator. Nature 433:627629.CrossRefGoogle ScholarPubMed
BRUIJNZEEL, L. A. 2004. Hydrological functions of tropical forests: not seeing the soil for the trees? Agriculture Ecosystems and Environment 104:185228.CrossRefGoogle Scholar
BRUIJNZEEL, L. A. & VENEKLAAS, E. J. 1998. Climatic conditions and tropical, montane forest productivity: the fog has not lifted yet. Ecology 79:39.CrossRefGoogle Scholar
BRUIJNZEEL, L. A., WATERLOO, M. J., PROCTOR, J., KUITERS, A. T. & KOTTERINK, B. 1993. Hydrological observations in montane rain forests on Gunung Silam, Sabah, Malaysia, with special reference to the Massenerhebung effect. Journal of Ecology 81:145167.CrossRefGoogle Scholar
CALLE, Z., SCHLUMPBERGER, B. O., PIEDRAHITA, L., LEFTIN, A., HAMMER, S. A., TYE, A. & BORCHERT, R. 2010. Seasonal variation in insolation induces synchronous bud break and flowering in the tropics. Trees 24:865877.CrossRefGoogle Scholar
CHAMBERS, J. M. 2008. Software for data analysis programming with R. Springer, Berlin. 501 pp.CrossRefGoogle Scholar
CHAVE, J., ANDALO, C., BROWN, S., CAIRNS, M. A., CHAMBERS, J. Q., EAMUS, D., FÖLSTER, H.,FROMARD, F., HIGUCHI, N., KIRA, T., LESCURE, J. P., NELSON, B. W., OGAWA, H., PUIG, H., RIÉRA, B. & YAMAKURA, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:8799.CrossRefGoogle ScholarPubMed
CHAVE, J., COOMES, D. A., JANSEN, S., LEWIS, S. L., SWENSON, N. G. & ZANNE, A. E. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12:351366.CrossRefGoogle ScholarPubMed
CHAVE, J., NAVARRETE, D., ALMEIDA, S., ALVAREZ, E., ARAGÃO, L. E. O. C., BONAL, D., CHATELET, P., SILVA-ESPEJO, J. E., GORET, J. Y., VON HILDEBRAND, P., JIMÉNEZ, E., PATIÑO, S., PEÑUELA, M. C., PHILLIPS, O. L., STEVENSON, P. & MALHI, Y. 2010. Regional and temporal patterns of litterfall in South America. Biogeosciences 7:4355.CrossRefGoogle Scholar
CLARK, D. A., BROWN, S., KICKLIGHTER, D. W., CHAMBERS, J. Q., THOMLINSON, J. R. & NI, J. 2001. Measuring net primary production in forests: concepts and field methods. Ecological Applications 11:356370.CrossRefGoogle Scholar
COLLINS, M., KNUTTI, R., ARBLASTER, J., DUFRENSE, J. L., FICHEFET, T., FRIEDLINGSTEIN, P., GAO, X., GUTWOSKI, W. J., JOHNS, T., KRINNER, G., SHONGWE, M., TEBALDI, C., WEAVER, A. J. & WHENER, M. 2013. Long-term climate change: projections, commitments and irreversibility. Pp. 10291136 in Stocker, T. F., Quin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P. M. (eds.). Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
CREWS, T., KITAYAMA, K., FOWNES, J. H., RILEY, R. H., HERBERT, D. A., MULLER-DUBOIS, D. & VITOUSEK, P. 1995. Changes in soil-phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:14071424.CrossRefGoogle Scholar
DEL AGUILA-PASQUEL, J., DOUGHTY, C. E., METCALFE, D. B., SILVA-ESPEJO, J. E., GIRARDIN, C. A. J., CHUNG GUTIERREZ, J. A., NAVARRO-AGUILAR, G. E, QUESADA, C. A., HIDALGO, C. G., REYNA HUAYMACARI, J. M., HALLADAY, K., DEL CASTILLO TORRES, D., PHILLIPS, O. & MALHI, Y. 2014. The seasonal cycle of productivity, metabolism and carbon dynamics in a wet aseasonal forest in north-west Amazonia (Iquitos, Peru). Plant Ecology and Diversity 7:7183.CrossRefGoogle Scholar
DELANEY, M., BROWN, S., LUGO, A. E., TORRES-LEZAMAA, A. & BELLO QUINTEROA, N. 1997. The distribution of organic carbon in major components of forests located in five life zones of Venezuela. Journal of Tropical Ecology 13:697708.CrossRefGoogle Scholar
DOUGHTY, C. E. & GOULDEN, M. L. 2008. Seasonal patterns of tropical forest leaf area index and CO2 exchange. Journal of Geophysical Research-Biogeosciences 113: G00B06.CrossRefGoogle Scholar
DOUGHTY, C. E., MALHI, Y., ARAUJO-MURAKAMI, A., METCALFE, D. B., SILVA-ESPEJO, J. E., ARROYO, L., HEREDIA, J. P., PARDO-TOLEDO, E., MENDIZABAL, L. M., ROJAS-LANDIVAR, V. D., MARTINEZ, M., VALENCIA, M., RIVERO, R. & VARE, L. In press. Allocation trade-offs dominate the response of tropical forest growth to seasonal and interannual drought. Ecology. http://dx.doi.org/10.1890/13-1507.1CrossRefGoogle Scholar
EDWARDS, P. J. & GRUBB, P. J. 1977. Studies of mineral cycling in a montane rain-forest in New-Guinea. 1. Distribution of organic-matter in vegetation and soil. Journal of Ecology 65:943969.CrossRefGoogle Scholar
FEELEY, K. J., SILMAN, M. R., BUSH, M., FARFAN, W., GARCIA CABRERA, K., MALHI, Y., MEIR, P., SALINAS REVILLA, N., RAURAU QUISIYUPANQUI, M. N. & SAATCHI, S. 2011. Upslope migration of Andean trees. Journal of Biogeography 38:783791.CrossRefGoogle Scholar
FRANKIE, G. W. 1975. Tropical forest phenology and pollinator plant coevolution. Pp. 192209 in Gilbert, L. E & Raven, P. H. (eds.). Coevolution of animals and plants. University of Texas Press, Austin.CrossRefGoogle Scholar
GIRARDIN, C. A. J., MALHI, Y., MAMANI, M., HUARACA HUASCO, W., DURAND, L., FEELEY, K. J., RAPP, J., SILVA-ESPEJO, J. E., SILMAN, M., SALINAS, N. & WHITTAKER, R. J. 2010. Net primary productivity and its allocation along a tropical forest elevation transect in the Peruvian Andes. Global Change Biology 16:31763192.CrossRefGoogle Scholar
GIRARDIN, C. A. J., SILVA-ESPEJO, J. E., DOUGHTY, C. E., HUARACA-HUASCO, W., METCALFE, D. B., GALIANO-CABRERA, D. F., DURAND-BACA, L., ARAGÃO, L. E. O. C., MARTHEWS, T. R., HUARACA-QUISPE, L. P., ALZAMORA-TAYPE, I., EGUILUZ-MORA, L., FARFÁN-AMÉZQUITA, W., GARCÍA-CABRERA, K., HALLADAY, K., FISHER, J. B., SILMAN, M., MEIR, P., SALINAS, N. & MALHI, Y. 2014. Productivity and carbon allocation in a tropical montane cloud forest of the Peruvian Andes. Plant Ecology and Diversity 7:107123.CrossRefGoogle Scholar
GIVNISH, T. J. 1999. On the causes of gradients in tropical tree diversity. Journal of Ecology 87:193210.CrossRefGoogle Scholar
GRUBB, P. J. 1977. Control of forest growth and distribution on wet tropical mountains, with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8:83107.CrossRefGoogle Scholar
HALLADAY, K., NEW, M. & MALHI, Y. 2012. Cloud frequency climatology at the Andes/Amazon transition: 1. Seasonal and diurnal cycles. Journal of Geophysical Research 117: D23102.Google Scholar
HAMILTON, L. S., JUVIK, J. O. & SCATENA, F. N. 1995. The climate of cloud forests. Pp. 3957 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, S. (eds.). Tropical montane cloud forests. Springer-Verlag, New York.CrossRefGoogle Scholar
HERBERT, D. A. & FOWNES, J. H. 1999. Forest productivity and efficiency of resource use across a chronosequence of tropical montane soils. Ecosystems 2:242254.CrossRefGoogle Scholar
HORWATH, A. B. 2011. Epiphytic bryophytes as cloud forest indicators: stable isotopes, biomass and diversity along an altitudinal gradient in Peru. PhD dissertation, University of Cambridge, Cambridge.Google Scholar
HUARACA HUASCO, W., GIRARDIN, C. A. J., DOUGHTY, C. E., METCALFE, D. B., DURAND, L., SILVA-ESPEJO, J. E., GALIANO CABRERA, D., ARAGÃO, L.E.O., ROZAS DAVILA, A., MARTHEWS, T. R., HUARACA-QUISPE, L. P., ALZAMORA-TAYPE, I., EGUILUZ-MORA, L., FARFAN, W., CABRERA, K. G., HALLADAY, K., SALINAS-REVILLA, N., SILMAN, M., MEIR, P. & MALHI, Y. 2014. Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes. Plant Ecology and Diversity 7:16.Google Scholar
KITAYAMA, K. & AIBA, S. I. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90:3751.CrossRefGoogle Scholar
LEIGH, E. G. 1999. The seasonal rhythm of fruiting and leaf flush and the regulation of animal populations. Pp. 149177 in Leigh, E. G. (eds.). Tropical forest ecology: a review from Barro Colorado Island. Oxford University Press, Oxford.CrossRefGoogle Scholar
LEUSCHNER, C., MOSER, G., BERTSCH, C., RÖDERSTEIN, M. & HERTEL, D. 2007. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology 8:219230.CrossRefGoogle Scholar
MALHI, Y., BAKER, T. R., PHILLIPS, O. L., ALMEIDA, S., ALVAREZ, E., ARROYO, L., CHAVE, J., CZIMCZIK, C. I., DI FIORE, A., HIGUCHI, N., KILLEEN, T. J., LAURANCE, S. G., LAURANCE, W. F., LEWIS, S. L., MERCADO MONTOYA, L. M., MONTEAGUDO, A., NEILL, D. A., VARGAS, P. N., PATIÑO, S., PITMAN, N. C. A., QUESADA, C. A., SALOMÃO, R., SILVA, J. N. M., LEZAMA, A. T., MARTÍNEZ, R. V., TERBORGH, J., VINCETI, B. & LLOYD, J. 2004. The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology 10:563591.CrossRefGoogle Scholar
MALHI, Y., ARAGÃO, L. E. O. C., METCALFE, D. B., PIVA, R., QUESADA, C. A., ALMEIDA, S., ANDERSON, L., BRANDO, P., CHAMBERS, J. Q., DA COSTA, A. C. L., HUTYRA, L. R., OLIVIERA, P., PATINO, S., PYLE, E. H., ROBERTSON, A. L. & TEIXEIRA, L. 2009. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology 15:12551274.CrossRefGoogle Scholar
MALHI, Y., SILMAN, M., SALINAS, N., BUSH, M., MEIR, P. & SAATCHI, S. 2010. Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Global Change Biology 16:31713175.CrossRefGoogle Scholar
MALHI, Y., DOUGHTY, C. & GALBRAITH, D. 2011. The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society B–Biological Sciences 366:32253245.CrossRefGoogle ScholarPubMed
MALHI, Y., AMEZQUITA, F. F., DOUGHTY, C. E., SILVA-ESPEJO, J. E., GIRARDIN, C. A. J., METCALFE, D. B., ARAGAO, L. E. O. C., HUARACA-QUISEPE, L. P., ALZAMORA-TAYPE, I., EGUILUZ-MORA, L., MARTHEWS, T. R., HALLADAY, K., QUESADA, C. A., ROBERTSON, A. L., FISHER, J. B., ZARAGOZA-CASTELLS, J., ROJAS-VILLAGRA, C. M., PELAEZ-TAPIA, Y., SALINAS, N., MEIR, P. & PHILLIPS, O. L. 2014. The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru, Plant Ecology and Diversity 7:85105.CrossRefGoogle Scholar
MARTHEWS, T. R., MALHI, Y., GIRARDIN, C. A. J., SILVA-ESPEJO, J. E., ARAGAO, L. E. O. C., METCALFE, D. B., RAPP, J. M., MERCADO, L. M., FISHER, R. A., GALBRAITH, D. R., FISHER, J. B., SALINAS-REVILLA, N., FRIEND, A. D. & RESTREPO-COUPE, N. 2012. Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency. Global Change Biology 18:28822898.CrossRefGoogle ScholarPubMed
MARTIN, A. R. & THOMAS, S. C. 2011. A reassessment of carbon content in tropical trees. PLOS ONE 6 (8): e23533.CrossRefGoogle ScholarPubMed
METCALFE, D. B., ASNER, G. P., MARTIN, R. E., SILVA-ESPEJO, J. E., HUARACA-HUASCO, W. H., FARFÁN AMÈZQUITA, F. F., CARRANZA-JIMENEZ, L., GALIANO-CARBERA, D. F., BACA, L. D., SINCA, F., HUARACA-QUISPE, L. P., TAYPE, I. A., MORA, L. E., DÁVILA, A. R., SOLÓRZANO, M. M., PUMA-VILCA, B. L., LAUPA ROMÁN, J. M., GUERRA BUSTIOS, P. C., REVILLA, N. S., TUPAYACHI, R., GIRARDIN, C. A. J., DOUGHTY, C. E. & MALHI, Y. 2014. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecology Letters 17:324332.CrossRefGoogle ScholarPubMed
MOSER, G., HERTEL, D. & LEUSCHNER, C. 2007. Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10:924935.CrossRefGoogle Scholar
MOSER, G., RÖDERSTEIN, M., SOETHE, N., HERTEL, D. & LEUSCHNER, C. 2008. Altitudinal changes in stand structure and biomass allocation of tropical mountain forests in relation to microclimate and soil chemistry. Pp. 229242 in Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.). Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin.CrossRefGoogle Scholar
MYNENI, R., YANG, W., NEMANI, R., HUETE, A. R., DICKINSON, R. E., KNYAZIKHIN, Y., DIDAN, K., FU, R., NEGRÓN JUÁREZ, R. I., SAATCHI, S. S., HASHIMOTO, H., ICHII, K., SHABANOV, N. V., TAN, B., RATANA, P., PRIVETTE, J. L., MORISETTE, J. T., VERMOTE, E. F., ROY, D. P., WOLFE, R. E., FRIEDL, M. A., RUNNING, S. W., VOTAVA, P., EL-SALEOUS, N., DEVADIGA, S., SU, Y. & SALOMONSON, V. V. 2007. Large seasonal swings in leaf area of Amazon rainforests. Proceedings of the National Academy of Sciences USA 104:48204823.CrossRefGoogle ScholarPubMed
OLIVARES, E. 1997. Prolonged leaf senescence in Clusia multiflora H.B.K. Trees 11:370377.Google Scholar
RAICH, J. W. 1997. Above-ground productivity and soil respiration in three Hawaiian rain forests. Forest Ecology and Management 107:309318.CrossRefGoogle Scholar
RAPP, J. M. & SILMAN, M. R. 2012. Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest. Climate Research 55:1732.CrossRefGoogle Scholar
RAPP, J. M., SILMAN, M. R., CLARK, J. S., GIRARDIN, C. A. J., GALIANO, D. & TITO, R. 2012. Intra- and inter-specific tree growth across a long altitudinal gradient in the Peruvian Andes. Ecology 93:20612072.CrossRefGoogle Scholar
RIVERA, G., ELLIOTT, S., CALDAS, L. S., NICOLOSSI, G., CORADIN, V. T. R. & BORCHERT, R. 2002. Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees 16:445456.CrossRefGoogle Scholar
RÖDERSTEIN, M., HERTEL, D. & LEUSCHNER, C. 2005. Above- and below-ground litter production in three tropical montane forests in southern Ecuador. Journal of Tropical Ecology 21:483492.CrossRefGoogle Scholar
ROWLAND, L., MALHI, Y., SILVA-ESPEJO, J.E., FARFAN-AMEZQUITA, F., HALLADAY, K., DOUGHTY, C. E., MEIR, P. & PHILLIPS, O. L. 2013. The sensitivity of wood production to seasonal and interannual variations in climate in a lowland Amazonian rainforest. Oecologia 174:295306.CrossRefGoogle Scholar
SALINAS, N., MALHI, Y., MEIR, P., SILMAN, M., ROMAN CUESTA, R., HUAMAN, J., SALINAS, D., HUAMAN, V., GIBAJA, A., MAMANI, M. & FARFAN, F. 2011. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytologist 189:967977.CrossRefGoogle ScholarPubMed
SCHUUR, E. A. G. & MATSON, P. A. 2001. Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431442.CrossRefGoogle ScholarPubMed
SOETHE, N., WILCKE, W., HOMEIER, J., LEHMANN, J. & ENGELS, C. 2008. Plant growth along the altitudinal gradient: role of plant nutritional status, fine root activity, and soil properties. Pp. 259266 in Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.). Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin.CrossRefGoogle Scholar
TAKYU, M., AIBA, S. & KITAYAMA, K. 2002. Effects of topography on tropical lower montane forests under different geological conditions on Mount Kinabalu, Borneo. Plant Ecology 159:3549.CrossRefGoogle Scholar
TANNER, E. V. J. 1980. Studies on the biomass and productivity in a series of montane rain forests in Jamaica. Journal of Ecology 68:573588.CrossRefGoogle Scholar
TANNER, E. V. J., VITOUSEK, P. M. & CUEVAS, E. 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:1022.CrossRefGoogle Scholar
VAN SCHAIK, C., TERBORGH, J. & WRIGHT, S. 1993. The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annual Reviews of Ecology and Systematics 24:353377.CrossRefGoogle Scholar
VITOUSEK, P. M. & SANFORD, R. L. 1986. Nutrient cycling in moist tropical forest. Annual Reviews of Ecology and Systematics 17:137167.CrossRefGoogle Scholar
WAGNER, F., ROSSI, V., STAHL, C., BONAL, D. & HERAULT, B. 2013. Asynchronism in leaf and wood production in tropical forests: a study combining satellite and ground-based measurements. Biogeosciences 10:73077321.CrossRefGoogle Scholar
WILLIAMS, K., FIELD, C. B. & MOONEY, H. A. 1989. Relationships among leaf construction cost, leaf longevity and light environment in rain forest plants of the genus Piper. American Naturalist 133:198211.CrossRefGoogle Scholar
WRIGHT, S. J. 1996. Phenological responses to seasonality in tropical forest plants. Pp. 440460 in Mulkey, S. D., Chazdon, R. L. & Smith, A. P. (eds.). Tropical forest ecophysiology. Chapman & Hall, New York.CrossRefGoogle Scholar
WRIGHT, S. J. & CALDERON, O. 1995. Phylogenetic patterns among tropical flowering phenologies. Journal of Ecology 83:937948.CrossRefGoogle Scholar
WRIGHT, S. J. & VAN SCHAIK, C. 1994. Light and the phenology of tropical trees. American Naturalist 143:192199.CrossRefGoogle Scholar
ZIMMERMAN, J. K., WRIGHT, S., CALDERON, O., APONTE PAGAN, M. & PATON, S. 2007. Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: the role of annual changes in irradiance. Journal of Tropical Ecology 23:231251.CrossRefGoogle Scholar
ZIMMERMANN, M., MEIR, P., BIRD, M. I., MALHI, Y. & CCAHUANA, A. J. Q. 2009. Climate dependence of heterotrophic soil respiration from a soil-translocation experiment along a 3000m tropical forest altitudinal gradient. European Journal of Soil Science 60:895906.CrossRefGoogle Scholar