Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T12:46:40.332Z Has data issue: false hasContentIssue false

The role of sucrose and sensory systems in fruit selection and consumption of Ateles geoffroyi in Yucatan, Mexico

Published online by Cambridge University Press:  19 March 2015

Miriam Pablo-Rodríguez*
Affiliation:
Biologia de la conducta, Instituto de Neuroetologia, Universidad Veracruzana, Avenida Dr. Luis Castelazo s/n, Colonia Industrial Animas, CP. 91000, Xalapa, Veracruz
Laura Teresa Hernández-Salazar
Affiliation:
Biologia de la conducta, Instituto de Neuroetologia, Universidad Veracruzana, Avenida Dr. Luis Castelazo s/n, Colonia Industrial Animas, CP. 91000, Xalapa, Veracruz
Filippo Aureli
Affiliation:
Biologia de la conducta, Instituto de Neuroetologia, Universidad Veracruzana, Avenida Dr. Luis Castelazo s/n, Colonia Industrial Animas, CP. 91000, Xalapa, Veracruz Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
Colleen M. Schaffner
Affiliation:
Biologia de la conducta, Instituto de Neuroetologia, Universidad Veracruzana, Avenida Dr. Luis Castelazo s/n, Colonia Industrial Animas, CP. 91000, Xalapa, Veracruz
*
1Corresponding author. Email: [email protected]

Abstract:

Our aim was to evaluate the role of sucrose and the role of smell, taste and touch in the selection and consumption of fruit in wild spider monkeys. We recorded the feeding bouts of 14 adults for 9 mo in the Otoch Ma’ax Yetel Kooh Reserve, Punta Laguna, Yucatan, Mexico. For each of 2346 inspections on fruits of six species the consumption or rejection and the use of touch, smell and taste was recorded. Ten fruit samples (five ripe and five unripe) from each species were collected and the sucrose concentration was determined with a refractometer. As expected, sucrose concentrations were higher in ripe than unripe fruits. The difference in sucrose concentration between ripe and unripe fruits was positively associated with the proportion of inspections on ripe fruits and the proportion of consumed ripe fruits. Furthermore, the senses of touch and taste were used more often when fruits were ripe, whereas the sense of smell was used more often when fruits were unripe. The results suggest that sensory cues and sucrose concentration play important roles in fruit selection in spider monkeys.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BARTON, R. A. & WHITEN, A. 1994. Reducing complex diets to simple rules: food selection by olive baboons. Behavior Ecology and Sociobiology 35:283293.Google Scholar
CHAPMAN, C. A., ROTHMAN, J. M. & LAMBERT, J. E. 2012. Food as a selective force in primates. Pp. 149168 in Mitani, J. C., Call, J., Kappeler, P. M., Palombit, R. A. & Silk, J. B. (eds). The evolution of primate societies. The University of Chicago Press, Chicago.Google Scholar
COLEMAN, J. C. & DOWNS, C. T. 2012. The sweet side of life: nectar sugar type and concentration preference in Wahlberg's epauletted fruit bat. Comparative Biochemistry and Physiology Part A 162:431436.Google Scholar
DANISH, L., CHAPMAN, C. A., HALL, M. B., RODE, K. D. & WORMAN, C. O. 2006. The role of sugar in diet selection in redtail and red colobus monkeys. Pp. 473478 in Hohmann, G., Robbins, M. & Boesch, C. (eds.). Feeding ecology in apes and other primates. Cambridge University Press. Cambridge.Google Scholar
DI FIORE, A., LINK, A. & DEW, L. 2008. Diets of wild spider monkeys. Pp. 81137 in Campbell, C. J. (ed.). Spider monkeys: behavior, ecology and evolution of the genus Ateles. Cambridge University Press, Cambridge.Google Scholar
DOMINY, N. 2004. Fruits, fingers, and fermentation: the sensory cues available to foraging primates. Integrative and Comparative Biology 44:295303.Google Scholar
DOMINY, N. J. & LUCAS, P. W. 2001. Ecological importance of trichromatic vision to primates. Nature 410:363366.Google Scholar
DOMINY, N. J., LUCAS, P. W., OSORIO, D. & YAMASHITA, N. 2001. The sensory ecology of primate food perception. Evolutionary Anthropology 10:171186.Google Scholar
FELTON, A. M., FELTON, A., WOOD, J. T., FOLEY, W. J., RAUBENHEIMER, D., WALLIS, I. R. & LINDENMAYER, D. B. 2009. Nutritional ecology of Ateles chamek in lowland Bolivia: how macronutrient balancing influences food choices. International Journal of Primatology 30:675696.Google Scholar
GARCIA-BAILO, B., TOGURI, K., ENY, K. M. & EL-SOHEMY, A. 2009. Genetic variation in taste and its influence on food selection. Journal of Integrative Biology 13:6980.Google Scholar
GLASER, D. 1989. Biological aspects of taste in South American primates. Medio Ambiente 10:107112.Google Scholar
GONZALEZ-ZAMORA, A., ARROYO-RODRIGUEZ, V., CHAVES, O., SANCHEZ-LOPEZ, S., STONER, K. & RIBA-HERNANDEZ, P. 2009. Diet of spider monkeys (Ateles geoffroyi) in Mesoamerica: current knowledge and future directions. American Journal of Primatology 71:820.Google Scholar
HERNÁNDEZ-SALAZAR, L. T., LASKA, M. & RODRÍGUEZ- LUNA, E. 2003. Olfactory sensitive for aliphatic esters in spider monkey (Ateles geoffroyi). Behavioral Neuroscience 117:11421149.Google Scholar
HIRAMATSU, C., MELIN, A. D., AURELI, F., SCHAFFNER, C. M., VOROBYEV, M. & KAWAMURA, S. 2009. Interplay of olfaction and vision in fruit foraging of spider monkeys. Animal Behaviour 77:14211426.Google Scholar
HLADIK, C. M. & SIMMEN, B. 1996. Taste perception and feeding behavior in nonhuman primates and human population. Evolutionary Anthropology 5:5871.3.0.CO;2-S>CrossRefGoogle Scholar
HLADIK, C. M., SIMMEN, B. & PASQUET, P. 2003. Primatological and anthropological aspects of taste perception and the evolutionary interpretation of “basic taste”. Anthropologie 41:6774.Google Scholar
HOFFMANN, J. N., MONTAG, A. G. & DOMINY, N. J. 2004. Meissner corpuscles and somatosensory acuity: the prehensile appendages of primates and elephants. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 281:11381147.Google Scholar
IRSAN, M. 1998. Changes in skin colour and other related quality characteristics of B10 Carambola (Averrhoa carambola L.) at different stages of maturity. Master's thesis, University Putra Malaysia. 11 pp.Google Scholar
KADER, A. A. 1999. Fruit maturity, ripening and quality relationship. Effect of pre- and post-harvest factors on storage of fruit. Acta Horticulturae 485:203208.CrossRefGoogle Scholar
KARASOV, W. H. & MARTINEZ DEL RIO, C. 2007. Physiological ecology: how animals process energy, nutrients and toxins. Princeton University Press, Princeton. 741 pp.Google Scholar
KINZEY, W. G. & NORCONCK, M. A. 1990. Hardness as a basis of fruit choice in two sympatric primates. American Journal of Physical Anthropology 81:515.Google Scholar
KITAMURA, S., YUMOTO, T., POONSWAD, P., CHUAILUA, P., PLONGMAI, K., MARUHASHI, T. & NOMA, N. 2002. Interactions between fleshy fruits and frugivores in a tropical seasonal forest in Thailand. Oecologia 133:559572.Google Scholar
LASKA, M. 1996. Taste preference thresholds for food-associated sugars in the squirrel monkey (Saimiri sciureus). Primates 37:9195.Google Scholar
LASKA, M., CARRERA-SANCHEZ, E., RODRIGUEZ-RIVERA, J. A. & RODRIGUEZ-LUNA, E. 1996. Gustatory thresholds for food-associated sugars in the spider monkey (Ateles geoffroyi). American Journal of Primatology 39:189193.Google Scholar
LASKA, M., SANCHEZ, E. & RODRÍGUEZ-LUNA, E. 1998. Relative taste preferences for food-associated sugars in the spider monkey (Ateles geoffroyi). Primates 39:9196.Google Scholar
LASKA, M., SCHEUBER, H. P., CARRERA-SANCHEZ, E. & RODRIGUEZ-LUNA, E. 1999. Taste difference thresholds for sucrose in two species of nonhuman primates. American Journal of Primatology 48:153160.Google Scholar
LASKA, M., HERNÁNDEZ-SALAZAR, L. T. & RODRÍGUEZ-LUNA, E. 2000. Food preference and nutrient composition in captivity spider monkey (Ateles geoffroyi). International Journal of Primatology 21:671683.CrossRefGoogle Scholar
LASKA, M., HERNÁNDEZ-SALAZAR, L. T. & RODRÍGUEZ-LUNA, E. 2003. Successful acquisition of an olfactory discrimination paradigm by spider monkeys (Ateles geoffroyi). Physiology and Behavior 78:321329.Google Scholar
LASKA, M., RIVAS-BAUTISTA, R. M. & HERNANDEZ-SALAZAR, L. T. 2006. Olfactory sensitivity for aliphatic alcohols and aldehydes in spider monkeys (Ateles geoffroyi). American Journal of Physical Anthropology 129:112120.Google Scholar
LASKA, M., FREIST, P. & KRAUSE, S. 2007. Which senses play a role in nonhuman primate food selection? A comparison between squirrel monkeys and spider monkeys. American Journal of Primatology 69:282294.Google Scholar
MARTIN, P. & BATESON, P. 1993. Measuring behaviour. an introductory guide. Cambridge University Press, Cambridge. 223 pp.CrossRefGoogle Scholar
MORIGUCHI, T., SANADA, T. & YAMAKI, S. 1990. Seasonal fluctuation of some enzymes relating to sucrose and sorbitol metabolism in peach fruit. Journal of American Society of Horticultural Science 115:278281.CrossRefGoogle Scholar
MURRAY, K. G., WINNETT-MURRAY, K., CROMIE, E. A., MINOR, M. & MEYERS, E. 1993. The influence of seed packaging and fruit color on feeding preferences of American robins. Vegetatio 107/108:217226.CrossRefGoogle Scholar
PEÑA, M., KNAPP, S., TUN GARRIDO, J., ORTIZ DIAZ, J. J., MCVEAN, A., PÖLL, E., BONILLA, N. & BROKAW, N. 2011. Árboles del mundo Maya. Natural History Museum, London. 263 pp.Google Scholar
RAMOS-FERNÁNDEZ, G. & AYALA-OROZCO, B. 2003. Population size and habitat use of spider monkey at Punta Laguna, Mexico. Pp. 191209 in Marsh, L. K. (ed.). Primates in fragments. Kluwer Academic, New York.Google Scholar
REGAN, B. C., JULLIOT, C., SIMMEN, B., VIÉNOT, F., CHARLES-DOMINIQUE, P. & MOLLON, J. D. 2001. Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 356:229283.Google Scholar
REYNOLDS, V., PLUMPTRE, A. & GREENHAM, H. J. 1998. Condensed tannins and sugars in the diet of chimpanzees (Pan troglodytes schweinfurthii) in the Budongo forest, Uganda. Oecologia 115:331336.Google Scholar
RIBA-HERNÁNDEZ, P., STONER, K. E. & LUCAS, P. W. 2003. The sugar composition of fruits in the diet of spider monkeys (Ateles geoffroyi) in tropical humid forest in Costa Rica. Journal of Tropical Ecology 19:709716.Google Scholar
RICHARD, A. F. 1985. Primates diets: patterns and principles. Pp. 163205 in Richard, A. F. (ed.). Primates in nature. W. H. Freeman, New York.Google Scholar
SABIR, A., KAFKAS, E. & TANGOLAR, S. 2010. Distribution of major sugars, acids and total phenols in juice of five grapevine (Vitis spp.) cultivars at different stages of berry development. Spanish Journal of Agricultural Research 8:425433.Google Scholar
TABACHNICK, B. G. & FIDELL, L. S. 2007. Using multivariate statistics. Allyn & Bacon, Boston. 980 pp.Google Scholar
VICK, L. G. 2008. Immaturity in spider monkeys: a risky business. Pp. 288328 in Campbell, C. J. (ed.). Spider monkeys: behavior, ecology and evolution of the genus Ateles. Cambridge University Press, Cambridge.Google Scholar
VISALBERGHI, E. & NEEL, C. 2010. Tufted capuchins (Cebus apella) use weight and sound to choose between full and empty nuts. Ecological Psychology 15:215228.CrossRefGoogle Scholar
VOIGT, F. A., BLEHER, B., FIETZ, J., GANZHORN, J. U., SCHWAB, D. & BÖHNING-GAESE, K. 2004. A comparison of morphological and chemical fruit traits between two sites with different frugivore assemblages. Oecologia 141:94104.Google Scholar
WIDDOWSON, E. M. & MCCANCE, R. A. 1935. The available carbohydrate of fruits: determination of glucose, fructose, sucrose and starch. Biochemical Journal 29:151156.Google Scholar