Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T22:50:56.616Z Has data issue: false hasContentIssue false

Population dynamics of canopy trees in New Caledonian rain forests: are monodominant Nothofagus (Nothofagaceae) forests successional to mixed rain forests?

Published online by Cambridge University Press:  16 September 2013

Jennifer Read*
Affiliation:
School of Biological Sciences, Monash University, Victoria 3800, Australia
Tanguy Jaffré
Affiliation:
UMR AMAP, IRD – Institut de recherche pour le développement, Laboratoire de Botanique et d'Ecologie Végétale Appliquées, BP A5 Nouméa, New Caledonia
*
1Corresponding author. Email: [email protected]

Abstract:

In New Caledonia, rain forests with an upper canopy dominated by single species of Nothofagus occur next to mixed-canopy forests, without discernible environmental cause. A potential explanation is that they are different successional stages. To test this hypothesis and predict long-term change in canopy dominance, population size structures of 61 canopy species were analysed in six Nothofagus-dominated forests and three adjacent mixed rain forests. Weibull analysis suggests that these Nothofagus forests are secondary forests, with recruitment insufficient to maintain monodominance, except at a high-altitude site. At low- to mid-altitudes the Nothofagus canopy is predicted to develop into a mixed canopy, unless moderate to severe disturbance occurs within its reproductive lifespan. However, adjacent mixed rain forests are also secondary, with 85% of analysed species showing no evidence of continuous regeneration. Fifteen species from both forest types showed reverse-J curves suggesting continuous regeneration, but only Calophyllum caledonicum did so consistently. Since few canopy species showed evidence of high shade tolerance and persistence, a small number of shade-tolerant species is predicted to dominate both forests in the long term, in the hypothetical absence of disturbance. Hence, temporal factors associated with disturbances play a key role in determining dominance in these forests.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ASH, J. 1982. The Nothofagus Blume (Fagaceae) of New Guinea. Pp. 355380 in Gressit, J. L. (ed.). Biogeography and ecology of New Guinea. Volume 1. Dr W. Junk Publishers, The Hague.CrossRefGoogle Scholar
ASH, J. 1988. Nothofagus (Fagaceae) forest on Mt Giluwe, New Guinea. New Zealand Journal of Botany 26:245258.CrossRefGoogle Scholar
BAILEY, R. L. & DELL, T. R. 1973. Quantifying diameter distributions with the Weibull function. Forest Science 19:97104.Google Scholar
BAKER, P. J., BUNYAVEJCHEWIN, S., OLIVER, C. D. & ASHTON, P. S. 2005. Disturbance history and historical stand dynamics of a seasonal tropical forest in western Thailand. Ecological Monographs 75:317343.CrossRefGoogle Scholar
BENITEZ-MALVIDO, J. 1998. Impact of forest fragmentation on seedling abundance in a tropical rainforest. Conservation Biology 12:380389.CrossRefGoogle Scholar
CARPENTER, R. J., READ, J. & JAFFRÉ, T. 2003. Reproductive traits of tropical rain-forest trees in New Caledonia. Journal of Tropical Ecology 19:351365.CrossRefGoogle Scholar
CHERRIER, J.-F. 1984. Les forêts denses de Nouvelle-Calédonie. Services des Forêts et du Patrimoine Naturel, Nouméa. 52 pp.Google Scholar
CONDIT, R., SUKUMAR, R., HUBBELL, S. P. & FOSTER, R. B. 1998. Predicting population trends from size distributions: a direct test in a tropical tree community. American Naturalist 152:495509.CrossRefGoogle Scholar
CONNELL, J. H. & LOWMAN, M. D. 1989. Low-diversity tropical rain forests: some possible mechanisms for their existence. American Naturalist 134:88119.CrossRefGoogle Scholar
DOAK, D. F. & MORRIS, W. 1999. Detecting population-level consequences of ongoing environmental change without long-term monitoring. Ecology 80:15371551.CrossRefGoogle Scholar
ELMQVIST, T., RAINEY, W. E., PIERSON, E. D. & COX, P. A. 1994. Effects of tropical cyclones Ofa and Val on the structure of a Samoan lowland rain forest. Biotropica 26:384391.CrossRefGoogle Scholar
ENRIGHT, N. J., RIGG, L. & JAFFRÉ, T. 2001. Environmental controls on species composition along a (maquis) shrubland to forest gradient on ultramafics at Mont Do, New Caledonia. South African Journal of Science 97:573580.Google Scholar
FEELEY, K. J., DAVIES, S. J., NOOR, M. N. S., KASSIM, A. R. & TAN, S. 2007. Do current stem size distributions predict future population changes? An empirical test of intraspecific patterns in tropical trees at two spatial scales. Journal of Tropical Ecology 23:191198.CrossRefGoogle Scholar
FONTY, É., MOLINO, J.-F., PRÉVOST, M.-F. & SABATIER, D. 2011. A new case of neotropical monodominant forest: Spirotropis longifolia (Leguminosae–Papilionoideae) in French Guiana. Journal of Tropical Ecology 27:641644.CrossRefGoogle Scholar
FRANKLIN, J., DRAKE, D. R., MCCONKEY, K. R., TONGA, F. & SMITH, L. B. 2004. The effects of Cyclone Waka on the structure of lowland tropical rain forest in Vava'u, Tonga. Journal of Tropical Ecology 20:409420.CrossRefGoogle Scholar
GENTRY, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75:134.CrossRefGoogle Scholar
HAASE, P. 1999. Regional tectonics, disturbance, and population size of isolated stands of Nothofagus fusca (Nothofagaceae) in a forest ecotone in south-western New Zealand. Journal of Biogeography 26:10911099.CrossRefGoogle Scholar
HART, P. 2012. Patterns of tree mortality in a monodominant tropical forest. Pp. 349358 in Sudarshana, P. (ed.). Tropical forests. InTech, Shanghai.Google Scholar
HART, T. B. 1990. Monospecific dominance in tropical rain forests. Trends in Ecology and Evolution 5:611.CrossRefGoogle ScholarPubMed
HART, T. B. 1995. Seed, seedling and sub-canopy survival in monodominant and mixed forests of the Ituri forest, Africa. Journal of Tropical Ecology 11:443459.CrossRefGoogle Scholar
HART, T. B., HART, J. A. & MURPHY, P. G. 1989. Monodominant and species-rich forests of the humid tropics: causes for their co-occurrence. American Naturalist 133:613633.CrossRefGoogle Scholar
HENKEL, T. W., MAYOR, J. R. & WOOLLEY, L. P. 2005. Mast fruiting and seedling survival of the ectomycorrhizal, monodominant Dicymbe corymbosa (Caesalpiniaceae) in Guyana. New Phytologist 167:543556.CrossRefGoogle ScholarPubMed
HETT, J. H. & LOUCKS, O. L. 1976. Age structure models of balsam fir and eastern hemlock. Journal of Ecology 64:10291044.CrossRefGoogle Scholar
HJERPE, J., HEDENAS, H. & ELMQVIST, T. 2001. Tropical rain forest recovery from cyclone damage and fire in Samoa. Biotropica 33:249259.CrossRefGoogle Scholar
IBANEZ, T., BORGNIET, L., MANGEAS, M., GAUCHEREL, C., GÉRAUX, H. & HÉLY, C. 2013. Rainforest and savanna landscape dynamics in New Caledonia: towards a mosaic of stable rainforest and savanna states? Austral Ecology 38:3345CrossRefGoogle Scholar
JAFFRÉ, T. 1980. Étude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie. Collection Travaux et Documents de l'ORSTOM no. 124. ORSTOM, Paris. 273 pp.Google Scholar
JAFFRÉ, T. 1993. Relation between ecological diversity and floristic diversity in New Caledonia. Biodiversity Letters 1:8287.CrossRefGoogle Scholar
JAFFRÉ, T. & VEILLON, J.-M. 1990. Etude floristique et structurale de deux forêts denses humides sur roches ultrabasiques en Nouvelle-Calédonie. Adansonia 3–4:243273.Google Scholar
JAFFRÉ, T. & VEILLON, J.-M. 1995. Structural and floristic characteristics of a rain forest on schist in New Caledonia: a comparison with an ultramafic rain forest. Adansonia 34:201226.Google Scholar
JAFFRÉ, T., VEILLON, J.-M. & PINTAUD, J.-C. 1997. Comparison de la diversité floristique des forêts denses humides sur roches ultramafiques et sur substrats differents en Nouvelle-Calédonie. Pp. 163170 in Jaffré, T., Reeves, R. D. & Becquer, T. (eds.). The ecology of ultramafic and metalliferous areas, proceedings of the 2nd International Conference on Serpentine Ecology. Documents Scientifiques et Techniques III2. ORSTOM, Nouméa.Google Scholar
JAFFRÉ, T., RIGAULT, F. & DAGOSTINI, G. 1998. Impact des feux de brousse sur les maquis ligno-herbacés des roches ultramafiques de Nouvelle-Calédonie. Adansonia 20:173189.Google Scholar
JAFFRÉ, T., MUNZINGER, J. & LOWRY, P. P. 2010. Threats to the conifer species found on New Caledonia's ultramafic massifs and proposals for urgently needed measures to improve their protection. Biodiversity and Conservation 19:14851502.CrossRefGoogle Scholar
KEPPEL, G., BUCKLEY, Y. M. & POSSINGHAM, H. P. 2010. Drivers of lowland rain forest community assembly, species diversity and forest structure on islands in the tropical South Pacific. Journal of Ecology 98:8795.CrossRefGoogle Scholar
KUNSTLER, G., COOMES, D. A. & CANHAM, C. D. 2009. Size-dependence of growth and mortality influence the shade tolerance of trees in a lowland temperate rain forest. Journal of Ecology 97:685695.CrossRefGoogle Scholar
KURODA, K. & SHIMAJI, K. 1984. The pinning method for marking xylem growth in hardwood species. Forest Science 30:548554.Google Scholar
LAURANCE, W. F., NASCIMENTO, H. E. M., LAURANCE, S. G., ANDRADE, A. C., FEARNSIDE, P. M., RIBEIRO, J. E. L. & CAPRETZ, R. L. 2006. Rain forest fragmentation and the proliferation of successional trees. Ecology 87:469482.CrossRefGoogle ScholarPubMed
LORIMER, C. G. & KRUG, A. G. 1983. Diameter distributions in even-aged stands of shade-tolerant and midtolerant tree species. American Midland Naturalist 109:331345.CrossRefGoogle Scholar
LUGO, A. E. 2008. Visible and invisible effects of hurricanes on forest ecosystems: an international review. Austral Ecology 33:368398.CrossRefGoogle Scholar
MANAUTÉ, J., JAFFRÉ, T., VEILLON, J. M. & KRANITZ, M. L. 2009. Review of the Araucariaceae in New Caledonia. Pp. 347358 in Bieleski, R. L. & Wilcox, M. D. (eds.). Proceedings of the 2002 Araucariaceae Symposium, Araucaria-Agathis-Wollemia. International Dendrology Society, Auckland.Google Scholar
MARIAUX, A. 1969. La périodicité de formation des cernes dans le bois de Limba. Bois et Forêts des Tropiques 128:3954.Google Scholar
MARTIJENA, N. E. 1998. Soil properties and seedling establishment in soils from monodominant and high-diversity stands of the tropical deciduous forests of México. Journal of Biogeography 25:707719.CrossRefGoogle Scholar
MCCOY, S., JAFFRÉ, T., RIGAULT, F. & ASH, J. E. 1999. Fire and succession in the ultramafic maquis of New Caledonia. Journal of Biogeography 26:579594.CrossRefGoogle Scholar
MCGUIRE, K. L. 2007a. Recruitment dynamics and ectomycorrhizal colonization of Dicymbe corymbosa, a monodominant tree in the Guiana Shield. Journal of Tropical Ecology 23:297307.CrossRefGoogle Scholar
MCGUIRE, K. L. 2007b. Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88:567574.CrossRefGoogle Scholar
MORAT, P., JAFFRÉ, T., TRONCHET, F., MUNZINGER, J., PILLON, Y., VEILLON, J.-M. & CHALOPIN, M. 2012. The taxonomic database « FLORICAL » and characteristics of the indigenous flora of New Caledonia. Adansonia sér. 3 34:179221.CrossRefGoogle Scholar
MYERS, N., MITTERMEIER, R., MITTERMEIER, C. G., FONSECA, G. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853858.CrossRefGoogle ScholarPubMed
NASCIMENTO, M. T. & PROCTOR, J. 1997a. Soil and plant changes across a monodominant rain forest boundary on Maracá Island, Roraima, Brazil. Global Ecology and Biogeography 6:387395.CrossRefGoogle Scholar
NASCIMENTO, M. T. & PROCTOR, J. 1997b. Population dynamics of five tree species in a monodominant Peltogyne forest and two other forest types on Maracá Island, Roraima, Brazil. Forest Ecology and Management 94:115128CrossRefGoogle Scholar
NASCIMENTO, M. T., BARBOSA, R. I., VILLELA, D. M. & PROCTOR, J. 2007. Above-ground biomass changes over an 11-year period in an Amazon monodominant forest and two other lowland forests. Plant Ecology 192:181191.CrossRefGoogle Scholar
NEWBERY, D. M, VAN DER BURGT, X. M. & MORAVIE, M.-A. 2004. Structure and inferred dynamics of a large grove of Microberlinia bisulcata trees in central African rain forest: the possible role of periods of multiple disturbance events. Journal of Tropical Ecology 20:131143.CrossRefGoogle Scholar
NEWBERY, D. M., PRAZ, C. J., VAN DER BURGT, X. M., NORGHAUER, J. M. & CHUYONG, G. B. 2010. Recruitment dynamics of the grove-dominant tree Microberlinia bisulcata in African rain forest: extending the light response versus adult longevity trade-off concept. Plant Ecology 206:151177.CrossRefGoogle Scholar
OGDEN, J., STEWART, G. H. & ALLEN, R. B. 1996. Ecology of New Zealand Nothofagus forests. Pp. 2582 in Veblen, T. T., Hill, R. S. & Read, J. (eds.). The ecology and biogeography of Nothofagus forests. Yale University Press, New Haven.Google Scholar
PEH, K. S.-H., LEWIS, S. L. & LLOYD, J. 2011a. Mechanisms of monodominance in diverse tropical tree-dominated systems. Journal of Ecology 99:891898.CrossRefGoogle Scholar
PEH, K. S.-H., SONKÉ, B., LLOYD, J., QUESADA, C. A. & LEWIS, S. L. 2011b. Soil does not explain monodominance in a Central African tropical forest. PLoS ONE 6, e16996.CrossRefGoogle ScholarPubMed
PERRY, G. L. & ENRIGHT, N. J. 2002. Humans, fire and landscape pattern: understanding a maquis-forest complex, Mont Do, New Caledonia, using a spatial ‘state-and-transition’ model. Journal of Biogeography 29:11431158.CrossRefGoogle Scholar
READ, J. & HOPE, G. S. 1996. Ecology of Nothofagus forests of New Guinea and New Caledonia. Pp. 200256 in Veblen, T. T., Hill, R. S. & Read, J. (eds.). The ecology and biogeography of Nothofagus forests. Yale University Press, New Haven.Google Scholar
READ, J., HOPE, G. & HILL, R. 1990. The dynamics of some Nothofagus-dominated rain forests in Papua New Guinea. Journal of Biogeography 17:185204.CrossRefGoogle Scholar
READ, J., HALLAM, P. & CHERRIER, J.-F. 1995. The anomaly of monodominant tropical rainforests: some preliminary observations in the Nothofagus-dominated rainforests of New Caledonia. Journal of Tropical Ecology 11:359389.CrossRefGoogle Scholar
READ, J., JAFFRÉ, T., GODRIE, E., HOPE, G. S. & VEILLON, J.-M. 2000. Structural and floristic characteristics of some monodominant and adjacent mixed rainforests in New Caledonia. Journal of Biogeography 27:233250.CrossRefGoogle Scholar
READ, J., HOPE, G. S. & HILL, R. S. 2005. Phytogeography and climate analysis of Nothofagus subgenus Brassospora in New Guinea and New Caledonia. Australian Journal of Botany 53:297312.CrossRefGoogle Scholar
READ, J., JAFFRÉ, T., FERRIS, J. M., MCCOY, S. & HOPE, G. S. 2006. Does soil determine the boundaries of monodominant rain forest with adjacent mixed rain forest and maquis on ultramafic soils in New Caledonia? Journal of Biogeography 33:10551065.CrossRefGoogle Scholar
READ, J., SANSON, G. D., BURD, M. & JAFFRÉ, T. 2008. Mass flowering and parental death in the regeneration of Cerberiopsis candelabra (Apocynaceae), a long-lived monocarpic tree in New Caledonia. American Journal of Botany 95:558567.CrossRefGoogle Scholar
READ, J., EVANS, R., SANSON, G. D., KERR, S. & JAFFRÉ, T. 2011. Wood properties and trunk allometry of co-occurring rainforest canopy trees in a cyclone-prone environment. American Journal of Botany 98:17621772.CrossRefGoogle Scholar
RICHARDS, P. W. 1952. The tropical rain forest. Cambridge University Press, Cambridge. 450 pp.Google Scholar
STEVENSON, J. & HOPE, G. 2005. A comparison of late Quaternary forest changes in New Caledonia and northeastern Australia. Quaternary Research 64:372383.CrossRefGoogle Scholar
THOMAN, D. R., BAIN, L. J. & ANTLE, C. E. 1969. Inferences on the parameters of the Weibull distribution. Technometrics 11:445460.CrossRefGoogle Scholar
TORTI, S. D., COLEY, P. D. & KURSAR, T. A. 2001. Causes and consequences of monodominance in tropical lowland forests. American Naturalist 157:141153.CrossRefGoogle ScholarPubMed
VALETTE, J. 2006. Chroniques des Terres Rouges. Alan Sutton, Saint-Cyr-sur-Loire. 192 pp.Google Scholar
VEBLEN, T. T., DONOSO, C., KITZBERGER, T. & REBERTUS, A. J. 1996. Ecology of southern Chilean and Argentinean Nothofagus forest. Pp. 293353 in Veblen, T. T., Hill, R. S. & Read, J. (eds). The ecology and biogeography of Nothofagus forests. Yale University Press, New Haven.Google Scholar
WEBB, E. L., SEAMON, J. O. & FA'AUMU, S. 2011. Frequent, low-amplitude disturbances drive high tree turnover rates on a remote, cyclone-prone Polynesian island. Journal of Biogeography 38:12401252.CrossRefGoogle Scholar
WHITMORE, T. C. 1998. Tropical rain forests of the Far East. (Second edition). Oxford University Press, Oxford. 282 pp.CrossRefGoogle Scholar
WOOLLEY, L. P., HENKEL, T. W. & SILLETT, S. C. 2008. Reiteration in the monodominant tropical tree Dicymbe corymbosa (Caesalpiniaceae) and its potential adaptive significance. Biotropica 40:3243.CrossRefGoogle Scholar
WRIGHT, S. J. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:114.CrossRefGoogle ScholarPubMed
WRIGHT, S. J., MULLER-LANDAU, H. C., CONDIT, R. & HUBBELL, S. P. 2003. Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology 84:31743185.CrossRefGoogle Scholar