Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T13:37:26.563Z Has data issue: false hasContentIssue false

Pioneer species distribution in treefall gaps in Neotropical rain forest; a gap definition and its consequences

Published online by Cambridge University Press:  10 July 2009

Jean Popma
Affiliation:
Permanent address: Department of Plant Ecology, Utrecht University, Lange Nieuwstraat 106, 3512 PN Utrecht, The Netherlands Laboratorio de Ecología, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México DF, México
Frans Bongers
Affiliation:
Permanent address: Department of Plant Ecology, Utrecht University, Lange Nieuwstraat 106, 3512 PN Utrecht, The Netherlands Laboratorio de Ecología, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México DF, México
Miguel Martínez-Ramos
Affiliation:
Departamento de Ecología, Institute de Biología, Universidad Nacional Autónoma de México, ap. postal 70233 04510 México DF, México
Erik Veneklaas
Affiliation:
Permanent address: Department of Plant Ecology, Utrecht University, Lange Nieuwstraat 106, 3512 PN Utrecht, The Netherlands Laboratorio de Ecología, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México DF, México

Abstract

An attempt was made to evaluate the consequences of applying a strict definition (Brokaw 1982a) to the delimitation of forest gaps in the field. The northernmost Neotropical rain forest, at Los Tuxtlas, Mexico, was searched for young (1–2 years old) single-event gaps that would meet the criteria of the definition. In 60 ha of rain forest, only 12 such gaps containing pioneer species could be found. Thirty-three pioneer species (shrubs and trees) were used as indicator species for gap conditions. Gap size, measured as projected canopy opening (sensu Brokaw 1982a), underestimated from 44 to 515% the size of the area colonized by pioneer species. On average the size of the colonized area was 3.4 times larger than the size of the projected canopy opening. The majority of the pioneer species showed a relative preference for gap borders, an area generally not included in the projected canopy opening. Pioneer plant abundance and density, and species richness and density, did not differ significantly between gap centres and gap borders. Floristical variation was not related to gap size or location in the gap. These findings can be explained if gap environment (to which pioneer plants respond) is seen as the result of many interacting factors, of which size of the canopy opening is only one. It is concluded that the definition for delimiting gaps in the field as proposed by Brokaw (1982a) cannot be regarded a generally applicable definition, and that its value as a comparative standard is doubtful.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BartonA, M. A, M. 1984. Neotropical pioneer and shade tolerant tree species: do they partition treefall gaps? Tropical Ecology 25:196202.Google Scholar
Bazzaz, F. A. 1984. Dynamics of wet tropical forests and their species strategies. Pp. 233243 in Medina, E., Vazquez-Yanes, C. & Mooney, H. A. (eds). Physiological ecology of plants in the wet tropics. Junk, The Hague. 254 pp.CrossRefGoogle Scholar
Bongers, F., Popma, J., Meave Del Castillo, J. & Carabias, J. 1988. Structure and floristic composition of the lowland rain forest of Los Tuxtlas, Mexico. Vegetatio (in press).CrossRefGoogle Scholar
Brokaw, N. V. L. 1982a. The definition of treefall gap and its effect on measures of forest dynamics. Biotropica 11:158160.CrossRefGoogle Scholar
Brokaw, N. V. L. 1982b. Treefalls: frequency, timing, and consequences. Pp. 101108 in Leigh, E. G., Rand, A. S. & Windsor, D. M. (eds). The ecology of a tropical forest. Smithsonian Institution Press, Washington D.C.Google Scholar
Brokaw, N. V. L. 1985a. Gap-phase regeneration in a tropical forest. Ecology 66:682687.CrossRefGoogle Scholar
Brokaw, N. V. L. 1985b. Treefalls, regrowth, and community structure in a tropical forest. Pp. 5369 in Pickett, S. T. A. & White, P. S. (eds). The ecology of natural disturbance and patch dynamics. Academic Press, New York. 472 pp.Google Scholar
Brokaw, N. V. L. 1987. Gap-phase regeneration of three pioneer tree species in a tropical forest. Journal of Ecology 75:920.CrossRefGoogle Scholar
Clark, D. & Clark, D. (in press.) Regeneration of tropical rainforest trees: conceptual and practical issues. Brenesia.Google Scholar
Denslow, J. S. 1980. Gap partitioning among tropical rainforest trees. Biotropica 12(suppl.):4755.CrossRefGoogle Scholar
FAO/UNESCO, 1975. Soil maps of the world. Vol. III Mexico and Central America. FAO/UNESCO, Paris.Google Scholar
Gomez-Pompa, A., Del Amo, S., Vazquez-Yanes, C. & Butanda, A. (eds). 1976. Regeneración de selvas. CECSA, Mexico DF. 640 pp.Google Scholar
Gomez-Pompa, A. & Del Amo, S. (eds). 1985. Investigaciones sobre la regeneración de selvas altas en Veracruz, Mexico. Vol. II. Alhambra, Mexico DF421 pp.Google Scholar
Gomez-Pompa, A. & Vazquez-Yanes, C. 1985. Estudios sobre la regeneración de selvas enregiones calidos humedor de Mexico. Pp. 125 in Gomez-Pompa, A. & Del Amo, S. (eds). Investigaciones sobre la regeneración de selvas altas en Veracruz. Mexico. Vol. II. Alhambra, Mexico DF. 421 pp.Google Scholar
Hartshorn, G. S. 1978. Tree falls and tropical forest dynamics. Pp. 617638 in Tomlinson, P. B. & Zimmerman, M. H. (eds). Tropical trees as Living systems. Cambridge University Press, Cambridge, UK.Google Scholar
Hartshorn, G. S. 1980. Neotropical forest dynamics. Biotropica 12(suppl.):2330.CrossRefGoogle Scholar
Hill, M. O. 1979. Twinspan, a Fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, Ithaca, New York.Google Scholar
Hill, M. O., Bunce, R. G. H. & Shaw, M. W. 1975. Indicator species analysis, a divisive polythetic method of classification and its application to a survey of native pinewoods in Scotland. Journal of Ecology 63:597613.CrossRefGoogle Scholar
Ibarra-Manríquez, G. 1985. Estudios preliminares sobre la flora leñosa de la Estacion de Biologia Tropical Los Tuxtlas, Veracruz, Mexico. Tesis Profesional, Facultad de Ciencias, Universidad Nacional Autonóma de Mexico, 264 pp.Google Scholar
Martínez-Ramos, M. 1985. Claros, ciclos vitales de los arboles tropicales, y la regeneracion natural de las selvas altas perennifolias. Pp. 191239 in Gomez-Pompa, A. & del Amo, S. (eds). Investigaciones sobre la regeneración de selvas altas en Veracruz, Mexico. Vol. II. Alhambra, Mexico DF. 421 pp.Google Scholar
Martínez-Ramos, M. & Alvarez-Buylla, E. 1986. Seed dispersal, gap dynamics and tree recruitment: the case of Cecropia obtusifolia at Los Tuxtlas, Mexico. Pp. 333346 in Estrada, E. & Fleming, T. H. (eds). Frugivores and seed dispersal. Junk, Dordrecht.CrossRefGoogle Scholar
Oldeman, R. A. A. 1978. Architecture and energy exchange of dicotyledonous trees in the forest. Pp. 535560 in Tomlinson, P. B. & Zimmerman, M. H. (eds). Tropical trees as living systems. Cambridge University Press, Cambridge, UK.Google Scholar
Orians, G. 1983. The influence of tree-falls in tropical tree species richness. Tropical Ecology 23:255279.Google Scholar
Pickett, S. T. A. 1983. Differential adaptation of tropical tree species to canopy gaps and its role in community dynamics. Tropical ecology 24:6884.Google Scholar
Popma, J., Bongers, F. & Meave Del Castillo, J. 1988. Patterns in the vertical structure of the lowland tropical rain forest of Los Tuxtlas, Mexico. Vegetatio (in press).CrossRefGoogle Scholar
Richards, P. W. 1952. The tropical rain forest. Cambridge University Press, Cambridge, UK, 450 pp.Google Scholar
Sarukhán, J., Martínez-Ramos, M. & Piñero, D. 1984. The analysis of demographic variability at the individual level and its population consequences. Pp. 83106 in Dirzo, R. & Sarukhan, J. (eds). Perspectives in plant population ecology. Sinauer, Sunderland, Mass.Google Scholar
Sarukhán, J., Piñero, D. & Martinez-Ramos, M. 1985. Plant demography: a community level interpretation. Pp. 1731 in White, J. (ed.). Studies on plant demography. Academic Press, London.Google Scholar
Schulz, J. P. 1960. Ecological studies on the rain forest in northern Surinam. Verhandelingen Konin-klijke Nederlandse Academic van Wetenschappen, afd. Natuurkunde, Tweede reeks III(1):1267.Google Scholar
Vazquez-Yanes, C. 1980. Notas sobre la autoecología de los árboles pioneros de rapido crecimiento de la selva tropical Iluviosa. Tropical Ecology 21:103112.Google Scholar
Vazquez-Yanes, C. & Orozco-Segovia, A. 1984. Ecophysiology of seed germination in the tropical humid forests of the world: a review. Pp. 3750 in Medina, E., Mooney, H. A. & Vazquez-Yanes, C. (eds). Physiological ecology of plants in the wet tropics. Junk, The Hague. 254 pp.CrossRefGoogle Scholar
Whitmore, T. C. 1978. Gaps in the forest canopy. Pp. 639655 in Tomlinson, P. B. & Zimmerman, M. H. (eds). Tropical trees as living systems. Cambrigde University Press, Cambridge UK.Google Scholar
Whitmore, T. C. 1982. On pattern and process on forests. Pp. 4559 in Newman, E. I. (ed.). Special publication series of the Britsh Ecological Society, no. 1. Blackwell Scientific Publications, London.Google Scholar
Whitmore, T. C. 1984. Tropical rainforests of the far east. (Second edition). Clarendon Press, Oxford, UK. 352 pp.Google Scholar