Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T11:48:30.409Z Has data issue: false hasContentIssue false

Phenological response of tropical plants to regional climate change in Xishuangbanna, south-western China

Published online by Cambridge University Press:  19 March 2013

Junbin Zhao
Affiliation:
Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China University of Chinese Academy of Sciences, Beijing 100049, China
Yiping Zhang*
Affiliation:
Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
Fuqiang Song
Affiliation:
Yunnan Institute of Environmental Science, Kunming, Yunnan 650034, China
Zaifu Xu
Affiliation:
Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
Laiyun Xiao
Affiliation:
Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
*
1Corresponding author. Email: [email protected]

Abstract:

The phenology of temperate plants is vulnerable to climate change. Yet, the phenological responses of tropical plants to climate change are still unclear. In this study, temporal trends (1973–1999) of four phenological events (budburst, growing season, flowering and flowering duration) were studied among 21 plant species in Xishuangbanna Tropical Botanical Garden (south-western China). Fourteen species (67%) showed significant phenological trends during the study period. Seven species (33%) presented delaying trends in budburst (average 1.4 d y−1) and such trend was more likely to be presented in those that started budburst earlier in the dry season. Four species (19%) showed trends of extension in growing season (average of 3.5 d y−1). These vegetative events appeared to be mainly influenced by increasing temperature. Rainfall showed little effects directly, however, the effects of temperature seemed to largely depend on the moisture condition. Flowering duration of five species (24%) was shortened by average 2.1 d y−1 which was most likely to be the result of the decline in sunshine duration during the rainy season. Our results suggest that the phenology of tropical plants has changed significantly in response to the regional climate change but these reactions are somewhat different from those of temperate plants.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ABU-ASAB, M. S., PETERSON, P. M., SHETLER, S. G. & ORLI, S. S. 2001. Earlier plant flowering in spring as a response to global warming in the Washington, DC, area. Biodiversity and Conservation 10:597612.CrossRefGoogle Scholar
AHAS, R., AASA, A., MENZEL, A., FEDOTOVA, V. G. & SCHEIFINGER, H. 2002. Changes in European spring phenology. International Journal of Climatology 22:17271738.CrossRefGoogle Scholar
ALLEN, P. H. 1956. The rain forests of Golfo Dulce. University of Florida Press, Florida. 417 pp.Google Scholar
BEIN, E., HABTE, B., JABER, A., BIRNIE, A. & TENGNAS, B. 1996. Useful trees and shrubs in Eritrea: identification, propagation and management for agricultural and pastoral communities. Regional Soil Conservation Unit, Nairobi. 422 pp.Google Scholar
BENDIX, J., HOMEIER, J., ORTIZ, E. C., EMCK, P., BRECKLE, S. W., RICHTER, M. & BECK, E. 2006. Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest. International Journal of Biometeorology 50:370384.CrossRefGoogle Scholar
BOLAND, D. J., BROOKER, M. I. H., CHIPPENDALE, G. M., HALL, N., HYLAND, B. P. M., JOHNSTON, R. D., KLEINIG, D. A. & TURNER, J. D. 2006. Forest trees of Australia. CSIRO Publishing, Collingwood. 768 pp.CrossRefGoogle Scholar
BOLLEN, A. & DONATI, G. 2005. Phenology of the littoral forest of Sainte Luce, Southeastern Madagascar. Biotropica 37:3243.CrossRefGoogle Scholar
BORCHERT, R. 1994a. Induction of rehydration and bud break by irrigation or rain in deciduous trees of a tropical dry forest in Costa Rica. Trees – Structure and Function 8:198204.CrossRefGoogle Scholar
BORCHERT, R. 1994b. Water status and development of tropical trees during seasonal drought. Trees – Structure and Function 8:115125.CrossRefGoogle Scholar
BORCHERT, R. 1994c. Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:14371449.CrossRefGoogle Scholar
BORCHERT, R. 1998. Responses of tropical trees to rainfall seasonality and its long-term changes. Climatic Change 39:381393.CrossRefGoogle Scholar
BORCHERT, R., RENNER, S. S., CALLE, Z., NAVARRETE, D., TYE, A., GAUTIER, L., SPICHIGER, R. & VON HILDEBRAND, P. 2005. Photoperiodic induction of synchronous flowering near the Equator. Nature 433:627629.CrossRefGoogle ScholarPubMed
CALLE, Z., STRAHLER, A. H. & BORCHERT, R. 2009. Declining insolation induces synchronous flowering of Montanoa and Simsia (Asteraceae) between Mexico and the Equator. Trees – Structure and Function 23:12471254.CrossRefGoogle Scholar
CALLE, Z., SCHLUMPBERGER, B. O., PIEDRAHITA, L., LEFTIN, A., HAMMER, S. A., TYE, A. & BORCHERT, R. 2010. Seasonal variation in daily insolation induces synchronous bud break and flowering in the tropics. Trees – Structure and Function 24:865877.CrossRefGoogle Scholar
CAO, M., ZHANG, J., FENG, Z., DENG, J. & DENG, X. 1996. Tree species composition of a seasonal rain forest in Xishuangsbanna, Southwest China. Tropical Ecology 37:183192.Google Scholar
CAO, M., ZOU, X. M., WARREN, M. & ZHU, H. 2006. Tropical forests of Xishuangbanna, China. Biotropica 38:306309.CrossRefGoogle Scholar
CHEN, X., HU, B. & YU, R. 2005. Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Global Change Biology 11:11181130.CrossRefGoogle Scholar
CLARK, D. A., PIPER, S. C., KEELING, C. D. & CLARK, D. B. 2003. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proceedings of the National Academy of Sciences USA 100:58525857.CrossRefGoogle ScholarPubMed
CLARKE, W. C. & THAMAN, R. R. 1993. Agroforestry in the Pacific Islands: systems for sustainability. United Nations University Press, Tokyo. 297 pp.Google Scholar
D'AMATO, G., LICCARDI, G., D'AMATO, M. & CAZZOLA, M. 2002. Outdoor air pollution, climatic changes and allergic bronchial asthma. European Respiratory Journal 20:763776.CrossRefGoogle ScholarPubMed
DOI, H. & KATANO, I. 2008. Phenological timings of leaf budburst with climate change in Japan. Agricultural and Forest Meteorology 148:512516.CrossRefGoogle Scholar
DOSE, V. & MENZEL, A. 2004. Bayesian analysis of climate change impacts in phenology. Global Change Biology 10:259272.CrossRefGoogle Scholar
EAMUS, D. 1999. Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trends in Ecology and Evolution 14:1116.CrossRefGoogle ScholarPubMed
FANG, H., LI, Y., LUO, W., JIANG, Z. & CHEN, H. 2004. The resource and vertical distribution in altitude of Vatica mangachapoi forest in Jianfengling, Hainan, China. Tropical Forestry 32:4347 (in Chinese).Google Scholar
FITTER, A. H. & FITTER, R. S. R. 2002. Rapid changes in flowering time in British plants. Science 296:16891691.CrossRefGoogle ScholarPubMed
FRENGUELLI, G. 2002. Interactions between climatic changes and allergenic plants. Monaldi Archives of Chest Disease 57:141143.Google ScholarPubMed
GORDO, O. & SANZ, J. J. 2009. Long-term temporal changes of plant phenology in the Western Mediterranean. Global Change Biology 15:19301948.CrossRefGoogle Scholar
GORDO, O. & SANZ, J. J. 2010. Impact of climate change on plant phenology in Mediterranean ecosystems. Global Change Biology 16:10821106.CrossRefGoogle Scholar
GREEN, P. B. & CUMMINS, W. R. 1974. Growth-rate and turgor pressure – auxin effect studied with an automated apparatus for single coleoptiles. Plant Physiology 54:863869.CrossRefGoogle Scholar
JAAGUS, J. 2006. Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation. Theoretical and Applied Climatology 83:7788.CrossRefGoogle Scholar
JACKSON, P. C., CAVELIER, J., GOLDSTEIN, G., MEINZER, F. C. & HOLBROOK, N. M. 1995. Partitioning of water-resources among plants of a lowland tropical forest. Oecologia 101:197203.CrossRefGoogle ScholarPubMed
KEATLEY, M. R., FLETCHER, T. D., HUDSON, I. L. & ADES, P. K. 2002. Phenological studies in Australia: potential application in historical and future climate analysis. International Journal of Climatology 22:17691780.CrossRefGoogle Scholar
KENDALL, M. G. 1975. Rank correlation measures. Charles Griffin, London. 202 pp.Google Scholar
LI, Y., PEI, S. & XU, Z. 1996. A checklist of the higher plants in Xishuangbanna. The Nationalities Publishing House of Yunnan, Kunming. 718 pp. (in Chinese).Google Scholar
LUNA, R. K. 1996. Plantation trees. International Book Distributor, Dehra Dun. 975 pp.Google Scholar
MATSUMOTO, K., OHTA, T., IRASAWA, M. & NAKAMURA, T. 2003. Climate change and extension of the Ginkgo biloba L. growing season in Japan. Global Change Biology 9:16341642.CrossRefGoogle Scholar
MENZEL, A. & FABIAN, P. 1999. Growing season extended in Europe. Nature 397:659.CrossRefGoogle Scholar
MENZEL, A., SPARKS, T. H., ESTRELLA, N., KOCH, E., AASA, A., AHAS, R., ALM-KUBLER, K., BISSOLLI, P., BRASLAVSKA, O., BRIEDE, A., CHMIELEWSKI, F. M., CREPINSEK, Z., CURNEL, Y., DAHL, A., DEFILA, C., DONNELLY, A., FILELLA, Y., JATCZA, K., MAGE, F., MESTRE, A., NORDLI, O., PENUELAS, J., PIRINEN, P., REMISOVA, V., SCHEIFINGER, H., STRIZ, M., SUSNIK, A., VAN VLIET, A. J. H., WIELGOLASKI, F. E., ZACH, S. & ZUST, A. 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12:19691976.CrossRefGoogle Scholar
MORTON, J. L. 1985. Indian almond (Terminalia catappa), salt-tolerant, useful, tropical tree with “nuts” worthy of improvement. Economic Botany 39:101112.CrossRefGoogle Scholar
NEMANI, R. R., KEELING, C. D., HASHIMOTO, H., JOLLY, W. M., PIPER, S. C., TUCKER, C. J., MYNENI, R. B. & RUNNING, S. W. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:15601563.CrossRefGoogle ScholarPubMed
OPLER, P. A., FRANKIE, G. W. & BAKER, H. G. 1976. Rainfall as a factor in the release, timing, and synchronization of anthesis by tropical trees and shrubs. Journal of Biogeography:231236.CrossRefGoogle Scholar
PARMESAN, C. & YOHE, G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:3742.CrossRefGoogle ScholarPubMed
PARTAL, T. & KAHYA, E. 2006. Trend analysis in Turkish precipitation data. Hydrological Processes 20:20112026.CrossRefGoogle Scholar
RIVERA, G. & BORCHERT, R. 2001. Induction of flowering in tropical trees by a 30-min reduction in photoperiod: evidence from field observations and herbarium specimens. Tree Physiology 21:201212.CrossRefGoogle ScholarPubMed
RIVERA, G., ELLIOTT, S., CALDAS, L. S., NICOLOSSI, G., CORADIN, V. T. R. & BORCHERT, R. 2002. Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees – Structure and Function 16:445456.CrossRefGoogle Scholar
ROOT, T. L., PRICE, J. T., HALL, K. R., SCHNEIDER, S. H., ROSENZWEIG, C. & POUNDS, J. A. 2003. Fingerprints of global warming on wild animals and plants. Nature 421:5760.CrossRefGoogle ScholarPubMed
STREETS, R. J. 1962. Exotic forest trees in the British Commonwealth. Clarendon Press, Oxford. 765 pp.Google Scholar
TABARI, H. & MAROFI, S. 2011. Changes of pan evaporation in the west of Iran. Water Resources Management 25:97111.CrossRefGoogle Scholar
WAN, M. W. & LIU, X. Z. 1979. Method of phenology observation in China. Science Press, Beijing. 136 pp. (in Chinese)Google Scholar
WHITE, M. A., RUNNING, S. W. & THORNTON, P. E. 1999. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. International Journal of Biometeorology 42:139145.CrossRefGoogle ScholarPubMed
WOLKOVICH, E. M., COOK, B. I., ALLEN, J. M., CRIMMINS, T. M., BETANCOURT, J. L., TRAVERS, S. E., PAU, S., REGETZ, J., DAVIES, T. J., KRAFT, N. J. B., AULT, T. R., BOLMGREN, K., MAZER, S. J., MCCABE, G. J., MCGILL, B. J., PARMESAN, C., SALAMIN, N., SCHWARTZ, M. D. & CLELAND, E. E. 2012. Warming experiments underpredict plant phenological responses to climate change. Nature 485:494497.CrossRefGoogle ScholarPubMed
WRIGHT, S. J. & VAN SCHAIK, C. P. 1994. Light and the phenology of tropical trees. American Naturalist 143:192199.CrossRefGoogle Scholar
YANG, D. & QIU, Q. 2007. Preliminary study on introduction of Hopea hainanensis. Jiangxi Forestry Technology 2:2729 (in Chinese).Google Scholar
YANG, D., QIU, Q., WEN, J. & SHI, F. 2008. Cultivation techniques and sapling growth of Dipterocarpus turbinatus. China Forestry Science and Technology 22:7982 (in Chinese).Google Scholar
ZHANG, K. 1966. Climatic characteristics and its cause of formation in southern Yunnan, China. Acta Meteorologica Sinica 33:210230 (in Chinese).Google Scholar
ZHAO, J., ZHANG, Y., SONG, F., XU, Z. & XIAO, L. 2012. Long-term trends of heat factors in Xishuangbanna Tropical Botanical Garden. Journal of Nanjing Forestry University (Nature Science Edition) 36:4852 (in Chinese).Google Scholar
ZHENG, J., YIN, Y. & LI, B. 2010. A new scheme for climate regionalization in China. Acta Geographica Sinica 65:312 (in Chinese).Google Scholar
ZIMMERMAN, J. K., WRIGHT, S. J., CALDERON, O., PAGAN, M. A. & PATON, S. 2007. Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: the role of annual changes in irradiance. Journal of Tropical Ecology 23:231251.CrossRefGoogle Scholar
ZISKA, L., KNOWLTON, K., ROGERS, C., DALAN, D., TIERNEY, N., ELDER, M. A., FILLEY, W., SHROPSHIRE, J., FORD, L. B., HEDBERG, C., FLEETWOOD, P., HOVANKY, K. T., KAVANAUGH, T., FULFORD, G., VRTIS, R. F., PATZ, J. A., PORTNOY, J., COATES, F., BIELORY, L. & FRENZ, D. 2011. Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proceedings of the National Academy of Sciences USA 108:42484251.CrossRefGoogle ScholarPubMed