Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T12:27:48.648Z Has data issue: false hasContentIssue false

Peoecological evidence of Raphia in the Pre-Columbian Neotropics

Published online by Cambridge University Press:  10 July 2009

Gerald R. Urquhart
Affiliation:
Department of Biology, The University of Michigan, Ann Arbor, MI 48109–1048 USA and Smithsonian Tropical Research Institute, Unit 0948, APO AA 34002–0948, USA

Abstract

Disjunctions between Africa and the Neotropics present a puzzle that is key to understanding the biogeography of the diverse floras and faunas of both continents. Many authors have proposed that Raphia taedigera Maur., the sole Neotropical representative of an otherwise African genus, has been introduced to the New World. Paleoecological data from a freshwater swamp in Nicaragua, which yielded R. taedigera pollen dating to 2800 ± 90 y before present (BP) and Raphia seed fragments from 2040 ± 60 BP are presented. These illustrate that Raphia taedigera arrived in the New World before trans-Atlantic trade by humans and thus arrived as a result of a natural phenomenon. The lack of differentiation of R. taedigera from the African sister taxon, R. vinifera, suggests recent separation of the two species (i.e. after the creation of the southern Atlantic Ocean by the splitting of West Gondwana). Other evidence supports dispersal of Raphia by ocean currents. The palm probably arrived from Africa by floating as an individual fruit or on a raft of vegetation. Thus, R. taedigera represents another example of trans-Atlantic dispersal, strengthening the link between the flora and fauna of Africa and the Neotropics.

Resumen

Las disyunciones entre el trópico africano y el Neotrópico presentan un enigma que es clave para entender la biogeograffa de las tan diversificadas floras y faunas de ambas regiones. Mushos autores han propuesto que Raphia taedigera Maur., única especie neotropical representante de un genero eminentemente africano, fue introducida en el Nuevo Mundo. Se presentan estudios paleoecológicos en pantanos de agua dulce de Nicaragua, los cuales mostraron polen de R. taedigera de 2800 ± 90 años de angigiüedad y fragmentos de una semilla de Raphia de 2040 ± 60 años. Estos ilustran el hecho que R. taedigera Ilegó al Nuevo Mundo como resultado de un fenómeno natural, previamente al intercambio trans-Atlantico por humanos. La ausencia de chracteres que segregen R. taedigera de R. vinifera, la especie africana más próxima, sugiere la reciente separación de las dos especies (es decir, despues de la formacion del Océano Atlántico tras la ruptura del Gondwana occidental). Otras evidencias apoyan la dispersión de Raphia por corrientes oceánicas. Probalamente Ilegó de Africa flotando, como frutas individuales o en una balsa de vegetación. Por tanto R. taedigera representa otro ejemplo de dispersi6n transáttentica, fortaleciendo la conexión entre las floras y faundas del tróipico africano y del Neótropico.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Aiello, L. C. 1993. The origin of the New World monkeys. Pp. 100114 in George, W. & Lavocat, R. (eds). The Africa South America connection. Clarendon Press, Oxford.Google Scholar
Allen, P. H. 1965. Raphia in the New World. Principes 9:6670.Google Scholar
Anderson, R. & Mori, S. 1967. A preliminary investigation of Raphia palm swamps, Puerto Viejo, Costa Rica. Turrialba 17:221224.Google Scholar
Aravena, R., Warner, B. G., Macdonald, G. M. & Hanf, K. I. 1992. Carbon isotope composition of lake sediments in relation to lake productivity and radiocarbon dating. Quaternary Research 37:333345.Google Scholar
Bartlein, P. J., Edwards, M. E., Shafer, S. L. & JrBarker, E. D. 1995. Calibration of radiocarbon ages and the interpretation of paleoenvironmental records. Quaternary Research 44:417424.Google Scholar
Brown, J. H. & Gibson, A. C. 1983. Biogeography. Mosby Co., St. Louis, Missouri. 643 pp.Google Scholar
Corner, E. J. H. 1966. The natural history of palms. University of California Press, Berkeley, CA. 393 pp.Google Scholar
Daghlian, C. P. 1981. A review of the fossil record of monocotyledons. Botanical Review 47:517555.Google Scholar
Faegri, K., Kaland, P. E. & Krzywinski, K. 1989. Textbook of pollen analysis. (4th edition). J. Wiley & Sons, New York. 328 pp.Google Scholar
Fairbanks, R. G. 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637642.CrossRefGoogle Scholar
Gentry, A. H. 1993. Diversity and floristic composition of lowland tropical forest in Africa and South America. Pp. 500547 in Goldblatt, P. (ed.). Biological relationships between Africa and South America. Yale University Press, New Haven, CT.CrossRefGoogle Scholar
George, W. 1993. The strange rodents of Africa and South America. Pp. 119141 in George, W. & Lavocat, R. (eds). The Africa South America connection. Clarendon Press, Oxford.Google Scholar
George, W. & Lavocat, R. (eds). 1993. The Africa South America connection. Clarendon Press, Oxford. 166 pp.Google Scholar
Goldblatt, P. (ed.). 1993a. Biological relationships between Africa and South America. Yale University Press, New Haven, CT. 630 pp.Google Scholar
Goldblatt, P. 1993b. Biological relationships between Africa and South America: an overview. Pp. 314 in Goldblatt, P. (ed.). Biological relationships between Africa and South America. Yale University Press, New Haven. 630 pp.Google Scholar
Guppy, H. B. 1917. Plants, seeds, and currents in the West Indies and Azores. Williams & Norgate, London. 531 pp.Google Scholar
Harries, H. C. 1978. The evolution, dissemination and classification of Cocos nucifera L. Botanical Review 44:265320.CrossRefGoogle Scholar
Hartley, C. W. S. 1988. The oil palm (Elaeis guineensis Jacq.). (3rd edition). J. Wiley & Sons, New York. 761 pp.Google Scholar
Janzen, D. H. 1983. Tapirus bairdii. Pp. 496497 in Janzen, D. H. (ed.). Costa Rican natural history. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Judson, S. 1990. Physical geology. (8th edition). Prentice Hall, Englewood Cliffs, NJ. 534 pp.Google Scholar
Mckenna, M. C. 1973. Sweepstakes, filters, corridors, Noah's arks, and beached Viking funeral ships in paleogeography. Pp. 295308 in Tarling, D. H. & Runcorn, S. K. (eds). Implications of continental drift to the earth sciences. Vol. 1. Academic Press, London.Google Scholar
Muller, J. 1981. Fossil pollen record of extant angiosperms. Botanical Review 47:1142.CrossRefGoogle Scholar
Okolo, E. C. 1988. Chromosome counts on Nigerian species of the genus Raphia. Principes 32:156159.Google Scholar
Otedoh, M. O. 1977. The African origin of Raphia taedigera – Palmae. Nigerian Field 42:1116.Google Scholar
Rich, P. V. & Rich, T. H. 1983. The Central American dispersal route: biotic history and paleogeography. Pp. 1234 in Janzen, D. H. (ed.). Costa Rican natural history. University of Chicago Press, Chicago.Google Scholar
Roubik, D. W. & Moreno, J. E. 1991. Pollen and spores of Barro Colorado Island. Monographs in systematics from the Missouri Botanical Gardens 36:1268.Google Scholar
Schatz, G. E. & Le Thomas, A. 1993. Annonaceae: a primitive dicot family with an ancient center in Africa-South America. Pp. 86104 in Goldblatt, P. (ed.). Biological relationships between Africa and South America. Yale University Press, New Haven, CT.CrossRefGoogle Scholar
Uhl, N. W. & Dransfield, J. 1987. Genera Palmarum. Allen Press, Lawrence, Kansas. 610 pp.Google Scholar
JrWagner, W. H. 1972. Disjunctions in homosporous vascular plants. Annals of the Missouri Botanical Gardens 59:203217.Google Scholar