Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T01:43:46.806Z Has data issue: false hasContentIssue false

Neotropical primary productivity affects biomass of the leaf-litter herpetofaunal assemblage

Published online by Cambridge University Press:  29 August 2012

Jessica L. Deichmann*
Affiliation:
Department of Biological Sciences, 107 Life Sciences Building, Louisiana State University, Baton Rouge, Louisiana 70803, USA Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia and Smithsonian Tropical Research Institute, C. P. 478, Manaus, AM 69011-970, Brazil
Catherine A. Toft
Affiliation:
Department of Evolution and Ecology, College of Biological Sciences, University of California, Davis, CA 95616, USA
Peter M. Deichmann
Affiliation:
Allens Pond Wildlife Sanctuary, Mass Audubon, Westport, MA 02790, USA
Albertina P. Lima
Affiliation:
Coordenação de Pesquisas em Ecologia, Instituto Nacional de Pesquisas da Amazônia, C. P. 478, Manaus, AM 69060-001, Brazil
G. Bruce Williamson
Affiliation:
Department of Biological Sciences, 107 Life Sciences Building, Louisiana State University, Baton Rouge, Louisiana 70803, USA Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia and Smithsonian Tropical Research Institute, C. P. 478, Manaus, AM 69011-970, Brazil
*
1Corresponding author. Email: [email protected]

Abstract:

Soil fertility and plant productivity are known to vary across the Amazon Basin partially as a function of geomorphology and age of soils. Using data on herpetofaunal abundance collected from 5 × 5 m and 6 × 6 m plots in mature tropical forests, we tested whether variation in community biomass of litter frogs and lizards across ten Neotropical sites could be explained by cation exchange capacity, primary productivity or stem turnover rate. About half of the variation in frog biomass (48%) could be attributed to stem turnover rate, while over two-thirds of the variation in lizard biomass (69%) was explained by primary productivity. Biomass variation in frogs resulted from variation in abundance and size, and abundance was related to cation exchange capacity (45% of variation explained), but size was not. Lizard biomass across sites varied mostly with individual lizard size, but not with abundance, and size was highly dependent on primary productivity (85% of variation explained). Soil fertility and plant productivity apparently affect secondary consumers like frogs and lizards through food webs, as biomass is transferred from plants to herbivorous arthropods to secondary consumers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Smithsonian Conservation Biology Institute, National Zoological Park, P.O. Box 37012, MRC 705, Washington, DC 20013-7012, USA.

References

LITERATURE CITED

ALLMON, W. D. 1991. A plot study of forest floor litter frogs, Central Amazon, Brazil. Journal of Tropical Ecology 7:503522.Google Scholar
BATJES, N. H. 2005. SOTER-based soil parameter estimates for Latin America and the Caribbean (ver. 1.0). Report 2005/02. ISRIC – World Soil Information, Wageningen. 32 pp.Google Scholar
BONGERS, F., CHARLES-DOMINIQUE, P., FORGET, P.-M. & THÉRY, M. 2001. Nouragues: dynamics and plant–animal interactions in a neotropical rainforest. Kluwer Academic Publishers, Boston. 421 pp.Google Scholar
DEICHMANN, J. L., DUELLMAN, W. E. & WILLIAMSON, G. B. 2008. Predicting biomass from snout-vent length in New World frogs. Journal of Herpetology 42:238245.Google Scholar
DEICHMANN, J. L., LIMA, A. P. & WILLIAMSON, G. B. 2011. Effects of geomorphology and primary productivity on Amazonian leaf litter herpetofauna. Biotropica 43:149156.Google Scholar
FEARNSIDE, P. M. & FILHO, N. L. 2001. Soil and development in Amazonia: lessons from the Biological Dynamics of Forest Fragments Project. Pp. 291312 in Bierregaard, R. O., Gascon, C., Lovejoy, T. E. & Mesquita, R. (eds.). Lessons from Amazonia: the ecology and conservation of a fragmented forest. Yale University Press, New Haven.Google Scholar
GREGORY-WODZICKI, K. M. 2000. Uplift history of the Central and Northern Andes: a review. Geological Society of America Bulletin 112:10911105.Google Scholar
GRIMALDI, M. & RIÉRA, B. 2001. Geography and climate. Pp. 918 in Bongers, F., Charles-Dominique, P., Forget, P.-M. & Théry, M. (eds.). Nouragues: dynamics and plant-animal interactions in a neotropical rainforest. Kluwer Academic Publishers, Boston.Google Scholar
HEATWOLE, H. 2012. Quadrat sampling. Pp. 220226 in McDiarmid, R. W., Foster, M. S., Guyer, C., Gibbons, J. W. & Chernoff, N. (eds.). Reptile biodiversity: standard methods for inventory and monitoring. University of California Press, Berkeley.Google Scholar
HEATWOLE, H. & SEXTON, O. J. 1966. Herpetofaunal comparisons between two climatic zones in Panama. American Midland Naturalist 75:4560.Google Scholar
JAEGER, R. G. & INGER, R. F. 1994. Quadrat sampling. Pp. 97102 in Heyer, W. R., Donnelly, M. A., McDiarmid, R. W., Hayek, L.-A. C. & Foster, M. S. (eds.). Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Institution Press, Washington.Google Scholar
JOHN, R., DALLING, J. W., HARMS, K. E., YAVITT, J. B., STALLARD, R. F., MIRABELLO, M., HUBBELL, S. P., VALENCIA, R., NAVARRETE, H., VALLEJO, M. & FOSTER, R. B. 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences, USA 104:864869.Google Scholar
LAURANCE, W. F., FEARNSIDE, P. M., LAURANCE, S. G., DELAMONICA, P., LOVEJOY, T. E., RANKIN-DE MERONA, J. M., CHAMBERS, J. Q. & GASCON, C. 1999. Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecology and Management 118:127138.Google Scholar
MALHI, Y., BAKER, T. R., PHILLIPS, O. L., ALMEIDA, S., ALVAREZ, E., ARROYO, L., CHAVE, J., CZIMCZIK, C. I., DIFIORE, A., HIGUCHI, N., KILLEEN, T. J., LAURANCE, S. G., LAURANCE, W. F., LEWIS, S. L., MONTOYA, L. M. M., MONTEAGUDO, A., NEILL, D. A., VARGAS, P. N., PATINO, S., PITMAN, N. C. A., QUESADA, C. A., SALOMAO, R., SILVA, J. N. M., LEZAMA, A. T., MARTINEZ, R. V., TERBORGH, J., VINCETI, B. & LLOYD, J. 2004. The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology 10:563591.Google Scholar
PEÑA-CLAROS, M., POORTER, L., ALARCÓN, A., BLATE, G., CHOQUE, U., FREDERICKSEN, T. S., JUSTINIANO, M. J., LEAÑO, C., LICONA, J. C., PARIONA, W., PUTZ, F. E., QUEVEDO, L. & TOLEDO, M. 2012. Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica 44:276283.Google Scholar
PERES, C. A. & DOLMAN, P. M. 2000. Density compensation in neotropical primate communities: evidence from 56 hunted and nonhunted Amazonian forests of varying productivity. Oecologia 122:175189.Google Scholar
QUESADA, C. A., LLOYD, J., ANDERSON, L. O., FYLLAS, N. M., SCHWARZ, M. & CZIMCZIK, C. I. 2011. Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:14151440.Google Scholar
SAVAGE, J. M. 1982. The enigma of the Central American herpetofauna: dispersals or vicariance? Annals of the Missouri Botanical Garden 69:464547.Google Scholar
SCOTT, N. J. 1976. The abundance and diversity of the herpetofaunas of tropical forest litter. Biotropica 8:4158.Google Scholar
SEBENS, K. P. 1987. The ecology of indeterminate growth in animals. Annual Review of Ecology & Systematics 18:371407.Google Scholar
SIOLI, H. & KLINGE, H. 1962. Solos, tipos de vegetacao e aquas na Amazonia. Boletim do Museo Paraense Emilio Goeldi 1:141.Google Scholar
SOLLINS, P., SANCHO, M. F., MATA, CH. R. & SANFORD, R. L. 1994. Soils and soil process research. Pp. 3453 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds.). La Selva, a nature reserve and field station in Costa Rica. University of Chicago Press, Chicago.Google Scholar
SOMBROEK, W. 2000. Amazon landforms and soils in relation to biological diversity. Acta Amazonica 30:81100.Google Scholar
TABORSKY, B. 2006. The influence of juvenile and adult environments on life-history trajectories. Proceedings of the Royal Society B 273:741750.Google Scholar
TOFT, C. A. 1980a. Feeding ecology of thirteen sympatric species of anurans in a seasonal tropical environment. Oecologia 45:131141.Google Scholar
TOFT, C. A. 1980b. Seasonal variation in populations of Panamanian litter frogs and their prey: a comparison of wetter and drier sites. Oecologia 47:3438.Google Scholar
VAN ENGELEN, V. W. P. & WEN, T. T. 1995. Global and national soils and terrain databases (SOTER). Procedures manual (revised edition). UNEP-ISSS-ISRIC-FAO, Wageningen. 125 pp.Google Scholar
WHITFIELD, S. M., BELL, K. E., PHILIPPI, T., SASA, M., BOLAÑOS, F., CHAVES, G., SAVAGE, J. M. & DONNELLY, M. A. 2007. Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proceedings of the National Academy of Sciences USA 104:83528356.Google Scholar
YAVITT, J. B. 2000. Nutrient dynamics of soil derived from different parent material on Barro Colorado Island, Panama. Biotropica 32:198207.Google Scholar