Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T09:12:48.990Z Has data issue: false hasContentIssue false

Local environmental context determines the colonisation of leaf shelters by arthropods: an experimental study

Published online by Cambridge University Press:  14 January 2022

Samuel Novais
Affiliation:
Instituto de Ecología A.C., Red de Interacciones Multitróficas, Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz91070, Mexico
Vicente Hernández-Ortiz
Affiliation:
Instituto de Ecología A.C., Red de Interacciones Multitróficas, Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz91070, Mexico
Karla Rodríguez-Hernández
Affiliation:
Posgrado del Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz91070, Mexico
Mauricio Quesada
Affiliation:
Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán58190, Mexico Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán58190, Mexico
G. Wilson Fernandes
Affiliation:
Laboratório de Ecologia Evolutiva e Biodiversidade, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG30270-971, Brasil
Carolina Bañol-Pérez
Affiliation:
Programa de Biología, Facultad de Ciencias de la Vida, Universidad Estatal Amazónica, Km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Ecuador
Edgar A. Sánchez-García
Affiliation:
Posgrado del Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz91070, Mexico
Fabian A. Aldaba-Núñez
Affiliation:
Posgrado del Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz91070, Mexico
Luis J. Méndez-Vázquez
Affiliation:
Posgrado del Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz91070, Mexico
Manuel Ochoa
Affiliation:
Posgrado del Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz91070, Mexico
Marisol A. Zurita-Solís
Affiliation:
Posgrado del Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz91070, Mexico
Armando Aguirre-Jaimes*
Affiliation:
Instituto de Ecología A.C., Red de Interacciones Multitróficas, Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz91070, Mexico
*
Author for correspondence: Armando Aguirre-Jaimes, Email: [email protected]

Abstract

The magnitude of facilitation by shelter-building engineers on community structure is expected to be greater when they increase limited resources in the environment. We evaluated the influence of local environmental context on the colonisation of leaf shelters by arthropods in a Mexican evergreen tropical rainforest. We compared the species richness and abundance of arthropods (total and for different guilds) colonising artificially rolled leaves in habitats differing in understory heterogeneity (forest edge > old-growth forests > living fences). Arthropod abundance of the most representative arthropod taxa (i.e., Araneae, Blattodea, Collembola and Psocoptera) colonising the rolled leaves was greater at forest edge, a trend also observed for average arthropod abundance, and for detritivore and predator guilds. In addition, fewer arthropod species and individuals colonised the rolled leaves in the living fence habitat, a trend also observed for most arthropod guilds. As forest edge is expected to have a greater arthropod diversity and stronger density-dependent interactions, a greater limitation of refuges from competitors or predators may have determined the higher colonisation of the rolled leaves in this habitat. Our results demonstrate that local environment context is an important factor that affects the colonisation of arthropods in leaf shelters.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbaro, L, Brockerhoff, EG, Giffard, B and van Halder, I (2012) Edge and area effects on avian assemblages and insectivory in fragmented native forests. Landscape Ecology 27, 14511463.CrossRefGoogle Scholar
Barbosa, VS, Leal, IR, Iannuzzi, L and Almeida-Cortez, J (2005) Distribution pattern of herbivorous insects in a remnant of Brazilian Atlantic Forest. Neotropical Entomology 34, 701711.CrossRefGoogle Scholar
Beng, KC, Tomlinson, KW, Shen, XH, Surget-Groba, Y, Hughes, AC, Corlett, RT and Slik, JF (2016) The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Scientific Reports 6, 24965.CrossRefGoogle ScholarPubMed
Bogyó, D, Magura, T, Nagy, DD and Tóthmérész, B (2015) Distribution of millipedes (Myriapoda, Diplopoda) along a forest interior – forest edge – grassland habitat complex. ZooKeys 510, 181195.CrossRefGoogle Scholar
Bruno, JF, Stachowicz, JJ and Bertness, MD (2003) Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution 18, 119125.CrossRefGoogle Scholar
Cornelissen, T, Cintra, F and Santos, JC (2016) Shelter-building insects and their role as ecosystem engineers. Neotropical Entomology 45, 112.CrossRefGoogle ScholarPubMed
Crain, CM and Bertness, MD (2006) Ecosystem engineering across environmental gradients: implications for conservation and management. BioScience 56, 211218.CrossRefGoogle Scholar
Crawley, MJ (2013) The R Book. Chichester: John Wiley and Sons.Google Scholar
Danks, HV (2002) Modification of adverse conditions by insects. Oikos 99, 1024.CrossRefGoogle Scholar
De Araújo, WS and do Espírito-Santo Filho, K (2012) Edge effect benefits galling insects in the Brazilian Amazon. Biodiversity and Conservation 21, 29912997.CrossRefGoogle Scholar
De Carvalho Guimarães, CD, Viana, JPR and Cornelissen, T (2014) A meta-analysis of the effects of fragmentation on herbivorous insects. Environmental Entomology 43, 537545.CrossRefGoogle ScholarPubMed
De Smedt, P, Baeten, L, Proesmans, W, Van de Poel, S, Van Keer, J, Giffard, B, Martin, L, Vanhulle, R, Brunet, J, Cousins, SA and Decocq, G (2019) Strength of forest edge effects on litter-dwelling macro-arthropods across Europe is influenced by forest age and edge properties. Diversity and Distributions 25, 963974.CrossRefGoogle Scholar
De Smedt, P, Wuyts, K, Baeten, L, De Schrijver, A, Proesmans, W, De Frenne, P, Ampoorter, E, Remy, E, Gijbels, M, Hermy, M and Bonte, D (2016) Complementary distribution patterns of arthropod detritivores (woodlice and millipedes) along forest edge-to-interior gradients. Insect Conservation and Diversity 9, 456469.CrossRefGoogle Scholar
Díaz, A, Galante, E and Favila, ME (2010) The effect of the landscape matrix on the distribution of dung and carrion beetles in a fragmented tropical rain forest. Journal of Insect Science 10, 81.CrossRefGoogle Scholar
Diehl, E, Mader, VL, Wolters, V and Birkhofer, K (2013) Management intensity and vegetation complexity affect web-building spiders and their prey. Oecologia 173, 579589.CrossRefGoogle ScholarPubMed
Dirzo, R and Garcia, MC (1992) Rates of deforestation in Los Tuxtlas, a neotropical area in southeast Mexico. Conservation Biology 6, 8490.CrossRefGoogle Scholar
Drozdová, M, Sipos, J and Drozd, P (2013) Key factors affecting the predation risk on insects on leaves in temperate floodplain forest. European Journal of Entomology 110, 469476.CrossRefGoogle Scholar
Estrada, A, Cammarano, P and Coates-Estrada, R (2000) Bird species richness in vegetation fences and in strips of residual rain forest vegetation at Los Tuxtlas, Mexico. Biodiversity and Conservation 9, 13991416.CrossRefGoogle Scholar
Estrada, A and Coates-Estrada, R (2001) Bat species richness in live fences and in corridors of residual rain forest vegetation at Los Tuxtlas, Mexico. Ecography 24, 94102.CrossRefGoogle Scholar
Floren, A and Linsenmair, KE (2001) The influence of anthropogenic disturbances on the structure of arboreal arthropod communities. Plant Ecology 153, 153167.CrossRefGoogle Scholar
Fowler, HG, Silva, CA and Venticinque, E (1993) Size, taxonomic and biomass distributions of flying insects in Central Amazonia: Forest edge versus understory. Revista de Biología Tropical 41, 755760.Google Scholar
Fukui, A (2001) Indirect interactions mediated by leaf shelters in animal–plant communities. Population Ecology 43, 3140.CrossRefGoogle Scholar
Gatti, RC, Castaldi, S, Lindsell, JA, Coomes, DA, Marchetti, M, Maesano, M, Di Paola, A, Paparella, F and Valentini, R (2015) The impact of selective logging and clearcutting on forest structure, tree diversity and above-ground biomass of African tropical forests. Ecological Research 30, 119132.CrossRefGoogle Scholar
Gonçalves-Souza, T, Almeida-Neto, M and Romero, GQ (2011) Bromeliad architectural complexity and vertical distribution predict spider abundance and richness. Austral Ecology 36, 476484.CrossRefGoogle Scholar
Grass, I, Jauker, B, Steffan-Dewenter, I, Tscharntke, T and Jauker, F (2018) Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks. Nature Ecology and Evolution 2, 14081417.CrossRefGoogle ScholarPubMed
Guevara, S, Laborde, J and Sánchez-Ríos, G (2004) La deforestación. In Guevara, S, Laborde, J and Sánchez-Ríos, G (eds.), Los Tuxtlas. El paisaje de la sierra. Xalapa: Instituto de Ecología A.C. and European Union. pp. 85108.Google Scholar
Gutiérrez-García, G and Ricker, M (2011) Climate and climate change in the region of Los Tuxtlas (Veracruz, Mexico): a statistical analysis. Atmósfera 24, 347373.Google Scholar
Halaj, J, Ross, DW and Moldenke, AR (2000) Importance of habitat structure to the arthropod food-web in Douglas-fir canopies Oikos 90, 139152.CrossRefGoogle Scholar
Harper, KA, Macdonald, SE, Burton, PJ, Chen, J, Brosofske, KD, Saunders, SC, Euskirchen, ES, Roberts, DA, Jaiteh, MS and Esseen, PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology 19, 768782.CrossRefGoogle Scholar
Henriques, NR, Cintra, F, Pereira, CC and Cornelissen, T (2019) Indirect effects of ecosystem engineering by insects in a tropical liana. Arthropod-Plant Interactions 13, 499504.CrossRefGoogle Scholar
Jiménez-Valverde, A and Lobo, JM (2007) Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: climate and altitude vs. habitat structure. Ecological Entomology 32, 113122.CrossRefGoogle Scholar
Jokimäki, J, Huhta, E, Itämies, J and Rahko, P (1998) Distribution of arthropods in relation to forest patch size, edge, and stand characteristics. Canadian Journal of Forest Research 28, 10681072.CrossRefGoogle Scholar
Jones, CG, Gutiérrez, JL, Byers, JE, Crooks, JA, Lambrinos, JG and Talley, TS (2010) A framework for understanding physical ecosystem engineering by organisms Oikos 119, 18621869.CrossRefGoogle Scholar
Langellotto, GA and Denno, RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139, 110.CrossRefGoogle ScholarPubMed
Lichtenberg, EM, Kennedy, CM, Kremen, C, Batary, P, Berendse, F, Bommarco, R, Bosque-Pérez, NA, Carvalheiro, LG, Snyder, WE, Williams, NM and Winfree, R (2017) A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology 23, 49464957.CrossRefGoogle ScholarPubMed
Lill, JT and Marquis, RJ (2007) Microhabitat manipulation: ecosystem engineering by shelter-building insects. In Cuddington, KMD, Byers, JE, Hastings, A, Wilson, WG (eds.), Ecosystem Engineers: Concepts, Theory, and Applications in Ecology. San Diego: Elsevier Press. pp. 107138.Google Scholar
Lenth, RV, Buerkner, P, Herve, M, Love, J, Riebl, H and Singmann, H (2021) Package ‘emmeans’. https://cran.r-project.org/web/packages/emmeans/emmeans.pdf Google Scholar
Martinsen, GD, Floate, KD, Waltz, AM, Wimp, GM and Whitham, TG (2000) Positive interactions between leafrollers and other arthropods enhance biodiversity on hybrid cottonwoods. Oecologia 123, 8289.CrossRefGoogle ScholarPubMed
Novais, S, Aguirre-Jaimes, A, Quesada, M and Hernández-Ortiz, V (2020a) Ecosystem engineering by leaf-rolling mites enhances arthropod diversity. The Science of Nature 107, 45.CrossRefGoogle ScholarPubMed
Novais, S, Calderón-Cortés, N, Sánchez-Montoya, G and Quesada, M (2018) Arthropod facilitation by wood-boring beetles: Spatio-temporal distribution mediated by a twig-girdler ecosystem engineer. Journal of Insect Science 18, 14.CrossRefGoogle ScholarPubMed
Novais, S, Cristóbal-Perez, EJ, Aguirre-Jaimes, A and Quesada, M (2021) Arthropod facilitation mediated by abandoned dead domatia. Ecosphere 12, e03323.CrossRefGoogle Scholar
Novais, S, DaRocha, WD, Calderón-Cortés, N and Quesada, M (2017) Wood-boring beetles promote ant nest cavities: extended effects of a twig-girdler ecosystem engineer. Basic and Applied Ecology 24, 5359.CrossRefGoogle Scholar
Novais, S, Hernández-Ortiz, V, Rodríguez-Hernández, K, Quesada, M, Valenzuela, J, Fernandes, GW and Aguirre-Jaimes, A (2020b) Ants nesting in dry fallen petioles of Cecropia obtusifolia Bertol (Urticaceae): vertical stratification and nest site limitation. Insectes Sociaux 67, 273279.CrossRefGoogle Scholar
Novais, S, Macedo-Reis, LE, DaRocha, WD and Neves, FS (2016) Effects of habitat management on different feeding guilds of herbivorous insects in cacao agroforestry systems. Revista de Biologia Tropical 64, 763777.CrossRefGoogle ScholarPubMed
Parrotta, JA, Francis, JK and Knowles, OH (2002) Harvesting intensity affects forest structure and composition in an upland Amazonian forest. Forest Ecology and Management 169, 243255.CrossRefGoogle Scholar
Pereira, CC, Sperandei, VDF, Henriques, NR, Silva, ÁAN, Fernandes, GW and Cornelissen, T (2021). Gallers as leaf rollers: Ecosystem engineering in a tropical system and its effects on arthropod biodiversity. Ecological Entomology 46, 470481.CrossRefGoogle Scholar
R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org/ Google Scholar
Richards, LA and Coley, PD (2007) Seasonal and habitat differences affect the impact of food and predation on herbivores: a comparison between gaps and understory of a tropical forest. Oikos 116, 3140.CrossRefGoogle Scholar
Romero, GQ, Gonçalves-Souza, T, Vieira, C and Koricheva, J (2015) Ecosystem engineering effects on species diversity across ecosystems: a meta-analysis. Biological Reviews 90, 877890.CrossRefGoogle ScholarPubMed
Sales, LP, Galetti, M and Pires, MM (2020) Climate and land-use change will lead to a faunal “savannization” on tropical rainforests. Global Change Biology 26, 70367044.CrossRefGoogle ScholarPubMed
Schulze, CH, Waltert, M, Kessler, PJA, Pitopang, R, Veddeler, D, Mühlenberg, M, Gradstein, SR, Leuschner, C, Steffan-Dewenter, I and Tscharntke, T (2004) Biodiversity indicator groups of tropical land-use systems: Comparing plants, birds, and insects. Ecological Applications 14, 13211333.CrossRefGoogle Scholar
Tylianakis, JM, Tscharntke, T and Lewis, OT (2007) Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202205.CrossRefGoogle ScholarPubMed
Urquiza-Haas, T, Dolman, PM and Peres, CA (2007) Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: effects of forest disturbance. Forest Ecology and Management 247, 8090.CrossRefGoogle Scholar
Vieira, C and Romero, GQ (2013) Ecosystem engineers on plants: Indirect facilitation of arthropod communities by leaf-rollers at different scales. Ecology 94 15101518.CrossRefGoogle ScholarPubMed
Villaseñor, J L, Ortiz, E and Campos-Villanueva, A (2018) High richness of vascular plants in the Tropical Los Tuxtlas region, Mexico. Tropical Conservation Science 11, 112.CrossRefGoogle Scholar
Von Thaden, JJ, Laborde, J, Guevara, S and Venegas-Barrera, CS (2018) Forest cover change in the Los Tuxtlas Biosphere Reserve and its future: the contribution of the 1998 protected natural area decree. Land Use Policy 72, 443450.CrossRefGoogle Scholar
Wang, HG, Marquis, RJ and Baer, C (2012) Both host plant and ecosystem engineer identity influence leaf-tie impacts on the arthropod community of Quercus . Ecology 93 21862197.CrossRefGoogle ScholarPubMed
Wetzel, WC, Screen, RM, Li, I, McKenzie, J, Phillips, KA, Cruz, M, Zhang, W, Greene, A, Lee, E, Singh, N and Tran, C (2016) Ecosystem engineering by a gall-forming wasp indirectly suppresses diversity and density of herbivores on oak trees. Ecology 97, 427438.CrossRefGoogle ScholarPubMed
Wirth, R, Meyer, ST, Leal, IR and Tabarelli, M (2008) Plant herbivore interactions at the forest edge. In Lüttge, U, Beyschlag, W and Murata, J (eds.), Progress in Botany. Berlin, Heidelberg: Springer. pp. 423448.CrossRefGoogle Scholar
Supplementary material: File

Novais et al. supplementary material

Novais et al. supplementary material

Download Novais et al. supplementary material(File)
File 307.5 KB