Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T00:07:53.343Z Has data issue: false hasContentIssue false

Is the São Francisco River a geographic barrier to gene flow in trees of Handroanthus ochraceus?

Published online by Cambridge University Press:  19 April 2013

Patrícia de Abreu Moreira*
Affiliation:
Departamento de Biologia Celular e Genética/Centro de Biociências/Universidade Federal do Rio Grande do Norte, CEP 59078-900, RN, Brazil
G. Wilson Fernandes
Affiliation:
Ecologia Evolutiva & Biodiversidade/DBG, ICB/Universidade Federal de Minas Gerais, CP 486, 30161-970 Belo Horizonte, MG, Brazil
*
1Corresponding author. Email: [email protected].

Abstract:

Many landscape features represent geographic barriers to gene flow, and promote genetic discontinuity. Rivers are effective barriers. However, most studies on this subject have focused on animals and only a few have focused on plants. We studied the genetic structure and gene flow of the tropical tree Handroanthus ochraceus (Bignoniaceae) on both banks of the São Francisco River in a Brazilian seasonally dry tropical forest. The São Francisco is located in eastern Brazil and is 600 m wide at the study site. Our hypothesis was that the river is a geographic barrier to gene flow of H. ochraceus trees. We sampled two populations on the left bank and one population on the right bank. We used seven microsatellites to genotype 212 individual plants. All populations had low polymorphism and genetic diversity, but high inbreeding. There was no genetic differentiation among populations and, consequently, the estimated gene flow was high for all pairs of populations. The genetic relatedness among individuals from populations of the same margin did not differ from the relatedness among individuals from populations of opposite margins. Hence, the São Francisco River is not an effective geographic barrier to gene flow among H. ochraceus populations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BARROS, M. G. 2001. Pollination ecology of Tabebuia aurea (Manso) Benth. & Hook. and T.ochracea (Cham.) Standl. (Bignoniaceae) in Central Brazil cerrado vegetation. Revista Brasileira de Botânica 24:255261.Google Scholar
BITTENCOURT, N. S. & MORAES, C. I. G. 2010. Self-fertility and polyembryony in South American yellow trumpet trees (Handroanthus chrysotrichus and H. ochraceus, Bignoniaceae): a histological study of postpollination events. Plant Systematics and Evolution 288:5976.CrossRefGoogle Scholar
BRAGA, A. C., REIS, A. M. M., LEOI, L. T., PEREIRA, R. W. & COLLEVATTI, R. G. 2007. Development and characterization of microsatellite markers for the tropical tree species Tabebuia aurea (Bignoniaceae). Molecular Ecology Notes 7:5356.CrossRefGoogle Scholar
CAPPARELLA, A. 1988. Genetic variation in neotropical birds: implications for the speciation process. Acta Congressus Internationalis Ornithologici 19:16581673.Google Scholar
CAPPARELLA, A. 1991. Neotropical avian diversity and riverine barriers. Acta Congressus Internationalis Ornithologici 20:307316.Google Scholar
CARVALHO, P. E. R. 1994. Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. EMBRAPA-CNPF, Brasília. 640 pp.Google Scholar
COCKERHAM, C. C. 1969. Variance of gene frequencies. Evolution 23:7284.CrossRefGoogle ScholarPubMed
COLLEVATTI, R. G., LEOI, L. C. T., LEITE, S. A. & GRIBEL, R. 2009. Contrasting patterns of genetic structure in Caryocar (Caryocaraceae) congeners from flooded and upland Amazonian forests. Biological Journal of the Linnean Society 98:278290.CrossRefGoogle Scholar
CORNUET, J. M. & LUIKART, G. 1996. Description and power analysis of two tests for detecting recent population bottlenecks form allele frequencies data. Genetics 144:20012014.CrossRefGoogle Scholar
CRAWLEY, M. J. 2002. Statistical computing: an introduction to data analysis using S-Plus. John Wiley & Sons, Chichester. 761 pp.Google Scholar
DOYLE, J. J. & DOYLE, J. L. 1987. Isolation of plant DNA from fresh tissue. Focus 12:1315.Google Scholar
ESPÍRITO-SANTO, M. M., SEVILHA, A. C., ANAYA, F. C., BARBOSA, R., FERNANDES, G. W., SANCHEZ-AZOFEIFA, G. A., SCARIOT, A., NORONHA, S. E. & SAMPAIO, C. A. 2009. Sustainability of tropical dry forests: two case studies in southeastern and central Brazil. Forest Ecology and Management 258:922930.CrossRefGoogle Scholar
FERNANDES, A. M., WINK, M. & ALEIXO, A. 2012. Phylogeography of the chestnut-tailed antbird (Myrmeciza hemimelaena) clarifies the role of rivers in Amazonian biogeography. Journal of Biogeography 39:15241535.CrossRefGoogle Scholar
FRAGOSO, J. M. V., SILVIUS, K. M. & CORREA, L. A. 2003. Long-distance seed dispersal by tapirs increases seed survival and aggregates tropical trees: long-distance dispersal. Ecology 84:19982006.CrossRefGoogle Scholar
FRANKHAM, R., BALLOU, J. D. & BRISCOE, D. A. 2002. Conservation genetics. Cambridge University Press, Cambridge. 617 pp.CrossRefGoogle Scholar
FREITAS, C. V. & OLIVEIRA, P. E. 2002. Biologia reprodutiva de Copaifera langsdorffii Desf. (Leguminosae, Caesalpinioideae). Revista Brasileira de Botânica 25:311321.Google Scholar
FUNK, W. C., BLOUIN, M. S., CORN, P. S., MAXELL, B. A., PILLIOD, D. S., AMISH, S. & ALLENDORF, F. W. 2005. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Molecular Ecology 14:483496.CrossRefGoogle ScholarPubMed
GENTRY, A. H. 1974. Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 6:6468.CrossRefGoogle Scholar
GENTRY, A. H. 1990. Evolutionary patterns in neotropical Bignoniaceae. Memoirs of the New York Botanical Garden 55:118129.Google Scholar
GHAZOUL, J. 2005. Pollen and seed dispersal among dispersed plants. Biological Reviews of the Cambridge Philosophical Society 80:413443.CrossRefGoogle ScholarPubMed
GIBBS, P. E. & BIANCHI, M. 1993. Post-pollination events in species of Chorisia (Bombacaceae) and Tabebuia (Bignoniaceae) with late-acting self-incompatibility. Botanica Acta 106:6471.CrossRefGoogle Scholar
GOUDET, J., RAYMOND, M., DE-MEEUS, T. & ROUSSET, F. 1996. Testing differentiation in diploid populations. Genetics 144:19331940.CrossRefGoogle ScholarPubMed
GOULSON, D. & STOUT, J. C. 2001. Homing ability of the bumblebee Bombus terrestris (Hymenoptera: Apidae). Apidologie 32:105111.CrossRefGoogle Scholar
GOVINDAJARU, R. D. 1989. Variation in gene flow levels among predominantly self-pollinated plants. Journal of Evolutionary Biology 2:173181.CrossRefGoogle Scholar
GRIBEL, R. & HAY, J. D. 1993. Pollination ecology of Caryocar brasiliense (Caryocaraceae) in Central Brazil cerrado vegetation. Journal of Tropical Ecology 9:199211.CrossRefGoogle Scholar
GROSE, S. O. & OLMSTEAD, R. G. 2007. Taxonomic revisions in the polyphyletic genus Tabebuia s. l. (Bignoniaceae). Systematic Botany 32:660670.CrossRefGoogle Scholar
HAMRICK, J. L. & NASON, J. D. 2000. Gene flow in forest trees. Pp. 8190 in Young, A., Boshier, D. & Boyle, T. (eds.). Forest conservation genetics: principles and practice. CSIRO Publishing, Collingwood, Australia. 352 pp.CrossRefGoogle Scholar
HEDRICK, P. W. 2005. A standardized genetic differentiation measure. Evolution 59:16331638.Google ScholarPubMed
HEDTKE, C. 1996. Untersuchungen zur Heimfindeleistung von Bombus (Hymenoptera, Apidae): eine analyse der leistungsbeeinflussenden Faktoren. Schriftenreihe des Länder-instituts für Bienenkunde Hohen Neuendorf 2, Berlin. 277 pp.Google Scholar
JANZEN, D. H. 1971. Euglossine bees as long-distance pollinators of tropical plants. Science 171:203205.CrossRefGoogle ScholarPubMed
KITAMOTO, N., HONJO, M., UENO, S., TAKENAKA, A., TSUMURA, Y., WASHITANI, I. & OHSAWA, R. 2005. Spatial genetic structure among and within populations of Primula sieboldii growing beside separate streams. Molecular Ecology 14:149157.CrossRefGoogle ScholarPubMed
KOLB, R. M. & JOLY, C. A. 2010. Germination and anaerobic metabolism of seeds of Tabebuia cassinoides (Lam.) DC. subjected to flooding and anoxia. Flora 205:112117.CrossRefGoogle Scholar
LAMBOROT, M., EATON, L. & CARRASCO, B. A. 2003. The Aconcagua River as another barrier to Liolaemus monticola (Sauria: Iguanidae) chromosomal races of central Chile. Revista Chilena de Historia Natural 76:2334.CrossRefGoogle Scholar
LATRUBESSE, E. M., STEVAUX, J. C., SANTOS, M. L. & ASSINE, M. L. 2005. Grandes sistemas fluviais: geologia, geomorfologia e paleoidrologia. Pp. 276297 in SOUZA, C. R. G., SUGUIO, K., OLIVEIRA, A. M. S. & OLIVEIRA, P. E. (Eds.). Quaternário do Brasil. Holos Editora, Ribeirão Preto. 380 pp.Google Scholar
LORENZI, H. 1992. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Editora Plantarum, Nova Odessa. 352 pp.Google Scholar
LYNCH, M. & RITLAND, K. 1999. Estimation of pairwise relatedness with molecular markers. Genetics 152:17531766.CrossRefGoogle ScholarPubMed
MANEL, S., SCHWARTZ, M. K., LUIKART, G. & TABERLET, P. 2003. Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology and Evolution 18:189197.CrossRefGoogle Scholar
MARTINS, R. L. & GRIBEL, R. 2007. Polinização de Caryocar villosum (Aubl.) Pers. (Caryocaraceae) uma árvore emergente da Amazônia Central. Revista Brasileira de Botânica 30:3543.Google Scholar
MAYR, E. 1963. Animal species and evolution. Harvard University Press, Cambridge. 797 pp.CrossRefGoogle Scholar
MENDES-RODRIGUES, C., SAMPAIO, D. S., COSTA, M. E., CAETANO, A. P. S., RANAL, M. A., BITTENCOURT, N. S. & OLIVEIRA, P. E. 2012. Polyembryony increases embryo and seedling mortality but also enhances seed individual survival in Handroanthus species (Bignoniaceae). Flora 207:264274.CrossRefGoogle Scholar
MOREIRA, P. A., FERNANDES, G. W. & COLLEVATTI, R. G. 2009. Fragmentation and spatial genetic structure in Tabebuia ochracea (Bignoniaceae) a seasonally dry Neotropical tree. Forest Ecology and Management 258:26902695.CrossRefGoogle Scholar
MÜLLER-SCHNEIDER, P. 1955. Verbreitungsbiologie der Blütenpflanzen Graubündens. (Second edition). Veröffentlichungen des Geobotanischen Institutes Rübel in Zürich, St. Rübel. 152 pp.Google Scholar
NASON, J. D., HERRE, E. A. & HAMRICK, J. L. 1998. The breeding structure of a tropical keystone plant resource. Nature 391:685687.CrossRefGoogle Scholar
NATHAN, R., KATUL, G. G., HORN, H. S., THOMAS, S. M., OREN, R., AVISSAR, R., PACALA, S. W. & LEVIN, S. A. 2002. Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409413.CrossRefGoogle ScholarPubMed
NEI, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individual. Genetics 89:583590.CrossRefGoogle Scholar
OOSTERHOUT, C. V., HUTCHINSON, W. F., WILLS, D. P. M. & SHIPLEY, P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4:535538.CrossRefGoogle Scholar
PEREIRA, S. B., PRUSKI, F. F., SILVA, D. D. & RAMOS, M. M. 2007. Estudo do comportamento hidrológico do rio São Francisco e seus principais afluentes. Revista Brasileira de Engenharia Agrícola e Ambiental 11:615622.CrossRefGoogle Scholar
PINTO, S. I. C., SOUZA, A. M. & CARVALHO, D. 2004. Variabilidade genética por isoenzimas em populações de Copaifera langsdorffii Desf. em dois fragmentos de mata ciliar. Scientia Forestalis 65:4048.Google Scholar
PIRY, S., LUIKART, G. & CORNUET, J. M. 1999. Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity 90:502503.CrossRefGoogle Scholar
PRADO, D. E. 2000. Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit. Edinburgh Journal of Botany 57:437461.CrossRefGoogle Scholar
PRADO, D. E. & GIBBS, P. E. 1993. Patterns of species distributions in the dry seasonal forests of South America. Annals of the Missouri Botanical Garden 80:902927.CrossRefGoogle Scholar
PRITCHARD, J. K., STEPHENS, M. & DONNELLY, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945959.CrossRefGoogle ScholarPubMed
QUELLER, D. C. & GOODNIGHT, K. F. 1989. Estimating relatedness using genetic markers. Evolution 43:258275.CrossRefGoogle ScholarPubMed
RIBEIRO, S. P., PIMENTA, H. R. & FERNANDES, G. W. 1994. Herbivory by chewing and sucking insects on Tabebuia ochracea. Biotropica 26:302307.CrossRefGoogle Scholar
RITLAND, K. 2004. MARK – Marker inferred relatedness and quantitative inheritance program. Available at: http://genetics.forestry.ubc.ca/ritland/programs.html.Google Scholar
SILVA JUNIOR, M. C. 2005. 100 árvores do Cerrado: guia de campo. Editora Rede de Sementes do Cerrado, Brasília. 278 pp.Google Scholar
SILVA, J. O., ESPÍRITO-SANTO, M. M. & MELO, G. A. 2012. Herbivory on Handroanthus ochraceus (Bignoniaceae) along a successional gradient in a tropical dry forest. Arthropod-Plant Interactions 6:4557.CrossRefGoogle Scholar
SPEAR, S. F., PETERSON, C. R., MATOCQ, M. D. & STORFER, A. 2005. Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Molecular Ecology 14:25532564.CrossRefGoogle ScholarPubMed
TERO, N. 2005. Genetic structure at different spatial scales in metapopulations of Silene tatarica. M.Sc. thesis, University of Oulu, Oulu, Finland.Google Scholar
TERO, N., ASPI, J., SIIKAMÄKI, P., JÄKÄLÄNIEMI, A. & TUOMI, J. 2003. Genetic structure and gene flow in a metapopulation of an endangered plant species, Silene tatarica. Molecular Ecology 12:20732085.CrossRefGoogle Scholar
VALLINOTO, M., ARARIPE, J., REGO, O. S., TAGLIARO, C. H., SAMPAIO, I. & SCHNEIDER, H. 2006. Tocantins river as an effective barrier to gene flow in Saguinus niger populations. Genetics and Molecular Biology 2:215219.CrossRefGoogle Scholar
VAN DER PIJL, L. 1982. Principles of dispersal in higher plants. (Third edition.) Springer, Berlin. 153 pp.CrossRefGoogle Scholar
VEKEMANS, X. & HARDY, O. J. 2004. New insights from fine-scale spatial genetic structure analysis in plant populations. Molecular Ecology 13:921935.CrossRefGoogle ScholarPubMed
WRIGHT, S. 1951. The genetical structure of populations. Annals of Human Genetics 15:323354.Google ScholarPubMed