Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T00:31:11.346Z Has data issue: false hasContentIssue false

Interactive ecology of two cohabiting characin fishes (Astyanax fasciatus and Astyanax bimaculatus) in an eutrophic Brazilian reservoir

Published online by Cambridge University Press:  10 July 2009

Marlene Sofia Arcifa
Affiliation:
Depto de Biologia F.F.C.L., Universidade de Sã Paulo, 14049 – Ribeirão Preto, Brasil,
Thomas Gordon Northcote
Affiliation:
The University of British Columbia, Resource Ecology, 2075 Wesbrook Mall, Vancouver, Canada,
Otávio Froehlich
Affiliation:
Depto de Biologia F.F.C.L., Universidade de Sã Paulo, 14049 – Ribeirão Preto, Brasil,

Abstract

The competitive interactions between two species of characins (Astyanax fasciatus and Astyanax bimaculatus) were investigated by studying their horizontal distribution, relative abundance and feeding habits in littoral and limnetic zones of Americana Reservoir, southern Brazil.

Differences in horizontal distribution of the species mainly as adults led to their partial habitat segregation. Most adult A. bimaculatus were littoral dwellers, whereas A. fasciatus adults were distributed from inshore to offshore waters, but with most in the latter region.

Both are facultative zooplanktivores in the reservoir, feeding mostly on planktonic crustaceans, insects (chiefly chironomids), some higher plant material, detritus and even fish scales (A. bimaculatus). Food overlap coefficients, considering adult and juvenile stages of both species are large in dry as well as wet seasons, although in the dry season the overlaps are significantly reduced for juveniles of both species and for juveniles of A. bimaculatus versus adults of A. fasciatus. Both species prey more on cladocerans than on cyclopoid copepods, and the adults selectively take larger forms (Daphnia gessneri and Moina micrura) in the reservoir (as in previously reported enclosure experiments). Juveniles prey heavily on Bosmina longirostris.

These two formerly riverine species may reduce competition, in the reservoir, by partial habitat segregation in older stages, a mechanism to avoid competition, which may have existed in their previous interactive history in rivers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Arams, P. 1980. Some comments on measuring niche overlap. Ecology 61:4449CrossRefGoogle Scholar
Arcifa, M. S. 1976. The planktonic Cladocera (Crustacea) and aspects of the eulrophicalion of Americana Reservoir, Brazil. Boletim de Zoologia, Universidade de São Paulo 1:105145.Google Scholar
Arcifa, M.S. 1984. Zooplankton composition of ten reservoirs in southern Brazil. Hydrobiologia 113:137145.CrossRefGoogle Scholar
Arcifa, M. S., Carvalho, M. A. J., Gianesella-Galvão, S. M. F., Shimizu, G. Y., Froehlich, C. G. & Castro, R. M. C. 1981a. Limnology on ten reservoirs in Southern Brazil. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 21:10481053.Google Scholar
Arcifa, M. S., Froehlich, C. G. & Gianesella-GalvÃo, S. M. F. 1981b. Circulation patterns and their influence on physico-chemical and biological conditions in eight reservoirs in Southern Brazil. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 21: 10541059.Google Scholar
Arcifa, M. S., Northcote, T. G. & Froehlich, O. 1986. Fish-zooplankton interactions and their effects on water quality of a tropical Brazilian reservoir. Hydrobiologia 139:4958.CrossRefGoogle Scholar
Arcifa, M. S., Froehlich, O. & Northcote, T. G. In press. Distribution and feeding ecology of fishes in a tropical Brazilian reservoir. Memoria Sociedad de Ciencias Nalurales La Salle.Google Scholar
Barbosa, P. M. M. & Matsumura-Tundisi, T. 1984. Consumption of zooplanktonic organisms by Astyanax fasciatus Cuvicr, 1819 (Osteichthyes Characidae) in Lobo (Broa) Reservoir, São Carlos, SP, Brazil. Hydrobiologia 113:171181.CrossRefGoogle Scholar
Brooks, J. L. 1968. The effects of prey size selection by lake planktivores. Systematic Zoology 17:273291.CrossRefGoogle Scholar
Bussing, W. A. 1976. Geographic distribution of the San Juan ichthyofauna of Central America with remarks on its origin and ecology. Pp 157175 in Thorson, T. B. (ed.). Investigations of the Ichthyofauna of Nicaraguan lakes. School of Life Sciences, University of Nebraska, Lincoln.Google Scholar
Castro, R. M. C. & Arcifa, M. S. 1987. Comunidades de peixes de reservatórios no sul do Brasil. Revista Brasileira de Biologia 47(4):493500.Google Scholar
Chesson, J. 1978. Measuring preference in selective predation. Ecology 59(2):211215.CrossRefGoogle Scholar
De Silva, S. S. & Kortmulder, K. 1977. Some aspects of the biology of three species of Puntius (= Barbus) (Pisces, Cyprinidae), endemic to Sri Lanka. Netherlands Journal of Zoology 27:182194.Google Scholar
De Silva, S. S., Kortmulder, K. & Wijhiyaratne, M. J. S. 1977. A comparative study of the food and feeding habits of Puntius bimaculatus and P. titteya (Pisces, Cyprinidac). Netherlands Journal of Zoology 27:253263.Google Scholar
Gee, J. H. & Northcote, T. G. 1963. Comparative ecology of two species of dace (Rhinichthys) in the Fraser River system, British Columbia. Journal of the Fisheries Research Board of Canada 20:105118.Google Scholar
Géry, J. 1977. Characoids of the world. T. H. F. Publications, Inc. Ltd., Neptune. 430 pp.Google Scholar
Godoy, M. P. 1975. Peixes do Brasil: subordem Characoidei. I. Editora Franciscana, São Paulo. 216 pp.Google Scholar
Goulding, M. 1980. The fishes and the forest: explorations in Amazonian natural history. University of California Press, Berkeley. 280 pp.Google Scholar
Holt, R. D. 1987. On the relation between niche overlap and competition: the effect of incommensurable niche dimensions. Oikos 48:110114.CrossRefGoogle Scholar
Lawlor, L. P. 1980. Overlap, similarity and competition coefficients. Ecology 61:245251.CrossRefGoogle Scholar
LÓPez, S. M. I. 1978. Migratión de la sardina Astyanax fasciatus (Characidae) en el rio Tempisque, Guanacaste, Costa Rica. Revista de Biologia Tropical 26(1):261275.Google Scholar
Lowe-Mcconnell, R. H. 1975. Fish communities in tropical fresh-waters. Longman, London & New York.337 pp.Google Scholar
Lowe-McCONNELL, R. H. 1987. Ecological studies in tropical fish communities. Cambridge University Press, Cambridge. 382 pp.CrossRefGoogle Scholar
Moyle, P. B. & Senanayake, F. R. 1984. Resource partitioning among the fishes of rainforest streams in Sri Lanka. Journal of Zoology, London 202:195223.CrossRefGoogle Scholar
Nelson, J. S. 1984. Fishes of the World. John Wiley & Sons, New York. 523 pp.Google Scholar
Nilsson, N. -A. 1978. The role of size-biased predation in competition and interactive segregation in fish. Pp. 303–325 in Gerking, S. D. (ed.). Ecology of freshwater fish production. Blackwell Scientific Publications, Oxford. 520 pp.Google Scholar
Nomura, H. 1975. Alimentaçãao de três espécies de peixes do gènero Astyanax Biard & Girard, 1854 (Osteichthyes, Characidae) do Rio Mogi Guaçu, SP. Revista Brasileira de Biologia 35(4):595614.Google Scholar
Northcote, T. G. 1954. Observations on the comparative ecology of two species of fish, Cottus asper and Cottus rhotheus, in British Columbia. Copeia 1954:2528.CrossRefGoogle Scholar
Northcote, T. G., Arclfa, M. S. & Froehlich, O. 1985. Effects of impoundment and drawdown on the fish community of a South American river. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 22:27042711.Google Scholar
Northcote, T. G., Arclfa, M. S. & Munro, K. 1990. An experimental study of the effects of fish zooplanktivory on the phytoplankton of a Brazilian reservoir. Hydrobiologia. 194:3145.Google Scholar
Northcote, T. G. & Clarotto, R. 1975. Limnetic macrozooplankton and fish predation in some coastal British Columbia lakes. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 19: 23782393.Google Scholar
Ortaz, M. & Infante, O. 1986. Selection de zooplancton por Astyanax bimaculatus (Linnaeus, 1758) en el Lago de Valencia, Venezuela. Acta Cientifica Venezolana 37:298301.Google Scholar
Saul, W. G. 1975. An ecological study of fishes at the site in upper Amazonian Ecuador. Proceedings of the Academy of Natural Sciences of Philadelphia 127:93134.Google Scholar
Sazima, I. 1984. Scale-eating in characoids and other fishes. Pp. 9–23 in Zarel, T. M. (ed.). Evolutionary ecology of Neotropical freshwater fishes. Dr W. Junk Publishers, The Hague. 173 pp.Google Scholar
Schoener, T. W. 1982. The controversy over interspecific competition. American Scientist 70:586595.Google Scholar
Schoener, T. W. 1983. Field experiments on interspecific competition. American Naturalist 122: 240285.CrossRefGoogle Scholar
Uieda, V. S. 1983. Regime alimentar, distribuição espacial c temporal de peixes (Teleostei) em um riacho na região de Limeira, São Paulo. MS thesis, Univ. Estadual de Campinas, 151 pp.Google Scholar
Weatherley, A. H. 1963. Notions of niche and competition among animals, with special reference to freshwater fish. Nature 197:1417.CrossRefGoogle Scholar
Wiens, J. A. 1977. On competition and variable environments. American Scientist 65:590597.Google Scholar
Zaret, T. M. 1980. Predation and freshwater communities. Yale University Press, New Haven & London, 187 pp.Google Scholar
Zaret, T. M. & Rand, A. S. 1971. Competition in tropical stream fishes: support for the competitive exclusion principle. Ecology 52(2):336342.CrossRefGoogle Scholar
Zaret, T. M. & Smith, E. P. 1984. On measuring niches and not measuring them. Pp. 127–137 in Zaret, T. M. (ed.). Evolutionary ecology of Neotropical freshwater fishes. Dr W. Junk Publishers, The Hague. 173 pp.CrossRefGoogle Scholar