Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T13:30:21.581Z Has data issue: false hasContentIssue false

How wide is the riparian zone of small streams in tropical forests? A test with terrestrial herbs

Published online by Cambridge University Press:  01 January 2008

Debora Pignatari Drucker*
Affiliation:
INPA – Instituto Nacional de Pesquisas da Amazônia/CPEC – Coordenação de Pesquisas em Ecologia, Caixa Postal 478, 69011-970, Manaus – AM, Brazil
Flávia Regina Capellotto Costa
Affiliation:
INPA – Instituto Nacional de Pesquisas da Amazônia/CPEC – Coordenação de Pesquisas em Ecologia, Caixa Postal 478, 69011-970, Manaus – AM, Brazil
William E. Magnusson
Affiliation:
INPA – Instituto Nacional de Pesquisas da Amazônia/CPEC – Coordenação de Pesquisas em Ecologia, Caixa Postal 478, 69011-970, Manaus – AM, Brazil
*
1Corresponding author. Email: [email protected]

Abstract:

Although it is well known that riparian zones can contribute strongly to between-habitat beta diversity, for most taxa it is not clear how far this ‘zone’ extends, and whether it corresponds to easily recognizable topographic features. Forty 200-m2 plots were installed in a terra firme tropical forest to detect compositional variation in terrestrial herbs from the margins of small streams to the uplands. Plots were ordinated by their dissimilarity in species composition with non-metric multidimensional scaling. The riparian zone around streams was distinct in understorey herb composition from upland areas for about 100 m from the streams, or about 70 m asl in elevation, the exact distance depending on the size of the stream valley. However, the only assemblage that was almost completely distinct occurred as a narrow band a few metres wide along the streams. The rest of the riparian zone appears to represent an ecotone with continuous change, most of which occurs out to a distance of about half the width of the riparian zone as we defined it. Although riparian zones are legally protected in Brazil, they are frequently degraded. The complex factors leading to zonation around streams need to be understood to effectively manage these areas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALSTON, A. H. G., JERMY, A. C. & RANKIN, J. M. 1981. The genus Selaginella in tropical South America. Bulletin of the British Museum (Natural history) Botany Series 4:233330.Google Scholar
BREN, L. J. 1993. Riparian zone, stream, and floodplain issues: a review. Journal of Hydrology 150:277299.CrossRefGoogle Scholar
BROWN, N. D. & JENNINGS, S. 1998. Gap-size niche differentiation by tropical rainforest trees: a testable hypothesis or a brokendown bandwagon? Pp. 7994 in Newbery, D. M., Prins, H. H. T. & Brown, N. D. (eds.). Dynamics of tropical communities. Blackwell, Oxford.Google Scholar
CHAUVEL, A. 1982. Os latossolos amarelos, álicos, argilosos dentro dos ecossistemas das bacias experimentaos do INPA e da regiao vizinha. Acta Amazonica 12:4760.CrossRefGoogle Scholar
CHAUVEL, A., LUCAS, Y. & BOULET, R. 1987. On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil. Geoderma 48:151162.Google Scholar
CLARK, D. B. 2002. Los fatores edáficos y la distribuición de las plantas. Pp. 193221 in Guariguata, M. & Kattan, G. (eds.). Ecologia y conservación de bosques neotropicales. Ediciones LUR, Cartago.Google Scholar
CLARK, D. B., PALMER, M. W. & CLARK, D. A. 1999. Edaphic factors and the landscape-scale distributions of tropical rain forests trees. Ecology 80:26622675.CrossRefGoogle Scholar
COSTA, F. R. C., MAGNUSSON, W. E. & LUIZÃO, R. C. 2005. Mesoscale distribution patterns of Amazonian understory herbs in relation to topography, soil and watersheds. Journal of Ecology 93:863878.CrossRefGoogle Scholar
DENSLOW, J. S. 1980. Gap partitioning among tropical rain forest trees. Biotropica 12:4755.CrossRefGoogle Scholar
DUQUE, A., SANCHEZ, M., CAVELIER, J. & DUIVENVOORDEN, J. F. 2002. Different floristic patterns of woody understorey and canopy plants in Colombian Amazonia. Journal of Tropical Ecology 18:499525.CrossRefGoogle Scholar
DUQUE MONTOYA, A. J.. 2001. Comentarios al concepto y la definición de comunidades vegetales en la Amazonía noroccidental. Crónica Forestal y Del Medio Ambiente 16:8997.Google Scholar
FERREIRA, L. V. 1997. Effects of the duration of flooding on species richness and floristic composition in three hectares in the Jaú National Park in floodplain forests in central Amazonia. Biodiversity and Conservation 6:13531363.CrossRefGoogle Scholar
FERREIRA, L. V. 2000. Effects of flooding duration on species richness, floristic composition and forest structure in river margin habitat in Amazonian blackwater floodplain forests: implications for future design of protected areas. Biodiversity and Conservation 9:114.CrossRefGoogle Scholar
FERREIRA, L. V. & PRANCE, G. T. 1998. Species richness and floristic composition in four hectares in the Jaú National Park in upland forests in Central Amazonia. Biodiversity and Conservation 7:13491364.CrossRefGoogle Scholar
GENTRY, A. H. 1988. Tree species richness of Upper Amazonian forests. Proceedings of the National Academy of Sciences, USA 85:156159.CrossRefGoogle ScholarPubMed
GREGORY, S. V., SWANSON, F. J., MCKEE, W. A. & CUMMINS, K. W. 1992. An ecosystem perspective of riparian zones. BioScience 41:540551.CrossRefGoogle Scholar
HODNETT, M. G., VENDRAME, I., MARQUES FILHO, A. O., OYAMA, M. D. & TOMASELLA, J. 1997. Soil water storage and groundwater behaviour in a catenary sequence beneath forest in Central Amazonia: II. Floodplain water table behaviour and implications for streamflow generation. Hydrology and Earth System Sciences 1:272277.Google Scholar
HUBBELL, S. P. 1979. Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203:12991309.CrossRefGoogle Scholar
HUBBELL, S. P., FOSTER, R. B., O'BRIEN, S. T., HARMS, K. E., CONDIT, R., WECHSLER, B., WRIGHT, S. J. & LOO DE LAO, S. 1999. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 5401:554557.CrossRefGoogle Scholar
JUNK, W. J. & PIEDADE, M. T. F. 1997. Plant life in the floodplain with special reference to herbaceous plants. Pp. 147185 in Junk, W. J. (ed). The Central Amazon floodplain. Springer-Verlag, Berlin.CrossRefGoogle Scholar
KALLIOLA, R. & PUHAKKA, M. 1988. River dynamics and vegetation mosaicism: a case study of the River Kamajohka, nothernmost Finland. Journal of Biogeography 15:703719.CrossRefGoogle Scholar
KEEL, S. H. & PRANCE, G. T. 1979. Studies of the vegetation of a white-sand black-water igapó (Rio Negro, Brazil). Acta Amazonica 9:645655.CrossRefGoogle Scholar
KRAMER, K. U. 1957. A revision of the genus Lindsaea in the new world with notes on allied genera. Acta Botanica Neerlandica 6:97290.CrossRefGoogle Scholar
LARCHER, W. 2003. Physiological plant ecology. (Fourth edition). Springer-Verlag, Berlin. 513 pp.CrossRefGoogle Scholar
LIEBERMAN, M., LIEBERMAN, D., HARTSHORN, G. S. & PERALTA, R. 1985. Small-scale altitudinal variation in lowland wet tropical forest vegetation. Journal of Ecology 73:505516.CrossRefGoogle Scholar
MAGNUSSON, W. E.; LIMA, A. P.; LUIZÃO, R.; LUIZÃO, F., COSTA, F. R. C., CASTILHO, C. V. & KINUPP, V. F. 2005. RAPELD: a modification of the Gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotrop. 5 (2): 6. http://www.biotaneotropica.org.br/v5n2/en/abstract?point-of-view+bn01005022005.CrossRefGoogle Scholar
MARQUES-FILHO, A. O., RIBEIRO, M. N. G., SANTOS, H. M. & SANTOS, J. M. 1981. Estudos climatológicos da reserva florestal Ducke – Manaus- AM. Acta Amazonica 11:759768.CrossRefGoogle Scholar
MONTGOMERY, R. A. & CHAZDON, R. L. 2002. Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia 131:165174.CrossRefGoogle ScholarPubMed
MORI, S. A., CREMERS, G., GRACIE, C., DE GRANVILLE, J.-J., HOFF, M. & MITCHELL, J. D. 1997. Guide to the vascular plants of central French Guiana. Vol. 1. Pteridophytes, gymnosperms and monocotyledons. Memoirs of the New York Botanical Garden 76:1422.Google Scholar
POULSEN, A. D. 1996. Species richness and density of ground herbs within a plot of lowland rainforest in north-west Borneo. Journal of Tropical Ecology 12:177190.CrossRefGoogle Scholar
POULSEN, A. D. & BALSLEV, H. 1991. Abundance and cover of ground herbs in an Amazonian rain forest. Journal of Vegetation Science 2:315322.CrossRefGoogle Scholar
POULSEN, A. D. & TUOMISTO, H. 1996. Small-scale to continental distribution patterns of neotropical pteridophytes: the role of edaphic preferences. Pp. 551561 in Camus, J. M., Gibby, M. & Johns, R. J. (eds). Pteridology in perspective. Royal Botanic Gardens, Kew.Google Scholar
RANZANI, G. 1980. Identificação e caracterização de alguns solos da Estação Experimental de Silvicultura Tropical do INPA. Acta Amazonica 10:741.CrossRefGoogle Scholar
RIBEIRO, J. E. L. DA S., HOPKINS, M. J. G., VICENTINI, A., SOTHERS, C. A., COSTA, M. A. S., BRITO, J. M., SOUZA, M. A. D., MARTINS, L. H. P., LOHMANN, L. G., ASSUNÇÃO, P. A. C. L., PEREIRA, E. C., SILVA, C. F., MESQUITA, M. R. & PROCÓPIO, E. L. C. 1999. Flora da Reserva Ducke: Guia de identificação das plantas vasculares de uma floresta de terra-firme na Amazônia Central. INPA/DFID, Manaus. 799 pp.Google Scholar
SABO, J. L., SPONSELLER, R., DIXON, M., GADE, K., HARMS, T., HEFFERNAN, J., JANI, A., KATZ, G., SOYKAN, C., WATTS, J. & WELTER, J. 2005. Riparian zones increase regional species richness by harboring different, not more, species. Ecology 86:5662.CrossRefGoogle Scholar
SALIS, S. M., TAMASHIRO, J. Y. & JOLY, C. A. 1994. Florística e fitossociologia do estrato arbóreo de um remanescente de mata ciliar do rio Jacaré-Pepira, Brotas, SP. Revista Brasileira de Botânica 17:93103.Google Scholar
SALO, J., KALLIOLA, R., HÄKKINEN, I., MÄKINEN, Y., NIEMELÄ, P., PUHAKKA, M. & COLEY, P. D. 1986. River dynamics and the diversity of Amazon lowland Forest. Nature 322:254258.CrossRefGoogle Scholar
SHMIDA, A. & WILSON, M. V. 1985. Biological determinants of species diversity. Journal of Biogeography 12:120.CrossRefGoogle Scholar
SILVERTOWN, J., DODD, M. E., GOWING, D. J. G. & MOUNTFORD, J. O. 1999. Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400:6163.CrossRefGoogle Scholar
STEYERMARK, J. A., BERRY, P. E. & HOLST, B. K. 1995. Flora of the Venezuelan Guayana: vol. 2. Pteridophytes and Spermatophytes (Acanthaceae – Araceae). Missouri Botanical Garden Press, St Louis. 681 pp.Google Scholar
SVENNING, J.-C. 1999. Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. Journal of Ecology 87:5565.CrossRefGoogle Scholar
TRYON, R. M. & STOLZE, R. G. 1989a. Pteridophyta of Peru: pt.1. 1. Ophioglossaceae – 12. Cyatheaceae. Fieldiana 20:1145.Google Scholar
TRYON, R. M. & STOLZE, R. G. 1989b. Pteridophyta of Peru: pt.2. 13. Pteridaceae – 15. Dennstaedtiaceae. Fieldiana 22:1128.Google Scholar
TUOMISTO, H. & GROOT, A. T. 1995. Identification of the juveniles of some ferns from western Amazonia. American Fern Journal 85:128.CrossRefGoogle Scholar
TUOMISTO, H. & RUOKOLAINEN, K. 1994. Distribution of Pteridophyta and Melastomataceae along an edaphic gradient in an Amazonian rain forest. Journal of Vegetation Science 5:2534.CrossRefGoogle Scholar
TUOMISTO, H., RUOKOLAINEN, K., AGUILAR, M. & SARMIENTO, A. 2003. Floristic patterns along a 43-km long transect in an Amazonian rain forest. Journal of Ecology 91:743756.CrossRefGoogle Scholar
VALENCIA, R., FOSTER, R., VILLA, G., CONDIT, R., SVENNING, J.-C., HERNÁNDEZ, C., ROMOLEROUX, K., LOSOS, E., MAGARD, E. & BALSLEV, H. 2004. Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology 92:214229.CrossRefGoogle Scholar
VORMISTO, J., PHILLIPS, O. L., RUOKOLAINEN, K., TUOMISTO, H. & VASQUEZ, R. 2000. A comparison of fine-scale distribution patterns of four plant groups in an Amazonian rainforest. Ecography 23:349359.CrossRefGoogle Scholar
WEBB, C. O. & PEART, D. R. 2000. Habitat associations of trees and seedlings in a Bornean rain forest. Journal of Ecology 88:464478.CrossRefGoogle Scholar
WHITTAKER, R. H. 1972. Evolution and measurement of species diversity. Taxon 21:213251.CrossRefGoogle Scholar
WIENS, J. A. 1989. Spatial scaling in ecology. Functional Ecology 3:385397.CrossRefGoogle Scholar
WINDISCH, P. G. 1996. Pteridófitas do estado do Mato Grosso: Hymenophyllaceae. Bradea 6:122.Google Scholar
WORBES, M. 1997. The forest ecosystem of the floodplains. Pp. 223265 in Junk, W. J. (ed). The Central Amazon floodplain. Springer-Verlag, Berlin.CrossRefGoogle Scholar
WRIGHT, S. J. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:114.CrossRefGoogle ScholarPubMed
ZOBEL, M. 1997. The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends in Ecology and Evolution 12:266269.CrossRefGoogle Scholar