Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T00:21:02.909Z Has data issue: false hasContentIssue false

Higher fire frequency impaired woody species regeneration in a south-eastern Amazonian forest

Published online by Cambridge University Press:  11 August 2020

Roberta Thays dos Santos Cury
Affiliation:
Laboratório de Biodiversidade e Restauração de Ecossistemas, Universidade Estadual de Londrina. Rod. Celso Garcia Cid, PR 445, Km 380, CEP 86057-990. Londrina, Paraná, Brazil Instituto de Pesquisa Ambiental da Amazônia. Avenida Nazaré 669, CEP 66.035-170. Belém, Pará, Brazil
Jennifer Kakareka Balch
Affiliation:
Department of Geography, The University of Colorado-Boulder. Guggenheim 110, 80309Boulder, CO, USA
Paulo Monteiro Brando
Affiliation:
Instituto de Pesquisa Ambiental da Amazônia. Avenida Nazaré 669, CEP 66.035-170. Belém, Pará, Brazil Woods Hole Research Center, 149 Woods Hole Road, 02540Falmouth, MA, USA
Rafael Barreto Andrade
Affiliation:
Department of Geography, The University of Colorado-Boulder. Guggenheim 110, 80309Boulder, CO, USA
Renata Picolo Scervino
Affiliation:
Laboratório de Biodiversidade e Restauração de Ecossistemas, Universidade Estadual de Londrina. Rod. Celso Garcia Cid, PR 445, Km 380, CEP 86057-990. Londrina, Paraná, Brazil
José Marcelo Domingues Torezan*
Affiliation:
Laboratório de Biodiversidade e Restauração de Ecossistemas, Universidade Estadual de Londrina. Rod. Celso Garcia Cid, PR 445, Km 380, CEP 86057-990. Londrina, Paraná, Brazil
*
Author for correspondence:*José Marcelo Domingues Torezan, Email: [email protected]

Abstract

Understorey wildfires harm tropical forests by affecting natural regeneration, but the trajectories of fire-disturbed forests after disturbance are poorly understood. To fill this gap, we conducted experimental burns in a transitional forest between the Amazon forests and the Brazilian Savanna (Cerrado) and investigated their effects on plant community diversity of regeneration. The experiment consisted of three 50-ha plots that between 2004 and 2010 were burned either annually (six times), every three years (thrice) or not at all (Control). To evaluate early post-fire recovery, we recorded grass occurrence and regenerating stems (≤1 cm in diameter at breast height). We noted that high fire-frequency plots had a reduction of species richness (62%) and abundance (84%) and were associated with floristic and structural changes, dominance of few species and increase of grass colonization when compared with low fire-frequency. We observed that resprouts were the main pathway for forest restoration in both burned regimes, particularly in low fire-frequency. However, the forest can recover from fires by means of resprouting, until a threshold in fire frequency is reached, when resprouts and seedlings declined for most of the species, with a few fire-tolerant species becoming dominant.

Resumo

Resumo

Incêndios têm ameaçado a dinâmica das florestas tropicais, alterando a regeneração natural, mas a dinâmica florestal após os incêndios é pouco conhecida. Para investigar os efeitos de incêndios na diversidade de plantas regenerantes foram conduzidos incêndios experimentais em um trecho de floresta transicional Amazônia-Cerrado. Os incêndios ocorreram entre 2004 e 2010, onde três parcelas de 50-ha foram queimadas anualmente (seis vezes), a cada três anos (três vezes), e não queimadas (Controle). Todas as plantas lenhosas (≤1 cm de diâmetro na altura do peito) e a ocorrência de gramíneas foram registradas. Alta frequência de incêndios reduziu a riqueza de espécies (62%) e a abundância (84%) e, resultou em alterações florísticas e estruturais, dominância de poucas espécies arbóreas e a colonização por gramíneas quando comparado com incêndios em baixa frequência. Houve aumento das rebrotas em ambos os tratamentos, especialmente onde os incêndios ocorreram em baixa frequência, tornando-se o principal meio para a restauração florestal, entretanto, as rebrotas podem manter o número de espécies até um limiar de frequência de incêndios nas florestas de transição. Após esse limiar ser atingindo, as rebrotas e as plântulas declinam, sendo substituídas por poucas espécies adaptadas ao fogo.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature cited

Alencar, A, Nepstad, D and Diaz, MCV (2006) Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interactions 10, 117.CrossRefGoogle Scholar
Balch, J.K, Nepstad, DC, Brando, PM, Curran, LM, Portela, O, Carvalho, O and Lefebvre, P (2008) Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology 14, 22762287.CrossRefGoogle Scholar
Balch, JK, Nepstad, DC and Curran, LM (2009) Pattern and process: fire-initiated grass invasion at Amazon transitional forest edges. In Cochrane, MA (ed.), Tropical fire Ecology: Climate Change, Land Use and Ecosystem Dynamics. Heidelberg: Springer-Praxis, pp. 481502.CrossRefGoogle Scholar
Balch, JK, Nepstad, DC, Curran, LM, Brando, PM, Portela, O, Guilherme, P, Reuning-Scherer, JD and Carvalho, O Jr (2011) Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management 261, 6877.CrossRefGoogle Scholar
Balch, JK, Massad, TJ, Brando, PM, Nepstad, DC and Curran, LM (2013) Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests. Philosophical Transactions of the Royal Society B 368, 20120152.CrossRefGoogle ScholarPubMed
Balch, JK, Brando, PM, Nepstad, DC, Coe, MT, Silvério, D, Massad, TJ, Davidson, EA, Lefebvre, P, Oliveira-Santos, C, Rocha, W, Cury, RTS, Parsons, A and Carvalho, KS (2015) The susceptibility of southeastern Amazon forests to fire: insights from a large-scale burn experiment. BioScience 65, 893905.CrossRefGoogle Scholar
Barlow, J and Peres, CA (2006) Effects of single and recurrent wildfires on fruit production and large vertebrate abundance in a central Amazonian forest. Biodiversity and Conservation 15, 9851012.CrossRefGoogle Scholar
Bellingham, PJ and Sparrow, AD (2000) Resprouting as a life history strategy in woody plant communities. Oikos 89, 409416.CrossRefGoogle Scholar
Bond, WJ and Midgley, JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology & Evolution 16, 4551.CrossRefGoogle ScholarPubMed
Brando, PM, Nepstad, DC, Balch, JK, Bolker, B, Christman, MC, Coe, M and Putz, FE (2012) Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Global Change Biology 18, 630641.CrossRefGoogle Scholar
Brando, PM, Coe, MT, Defries, R and Azevedo, AA (2013) Ecology, economy and management of an agroindustrial frontier landscape in the southeast Amazon. Philosophical Transactions of the Royal Society B 368, 20120152.CrossRefGoogle ScholarPubMed
Brando, PM, Balch, JK, Nepstad, DC, Morton, DC, Putz, FE, Coe, MT, Silvério, D, Macedo, MN, Davidson, EA, Nóbrega, CC, Alencar, A and Soares-Filho, BS (2014) Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proceedings of the National Academy of Sciences USA 111, 63476352.CrossRefGoogle ScholarPubMed
Brooks, ML, D’Antonio, CM, Richardson, DM, Grace, JB, Keeley, JE, Ditomaso, JM, Hobbs, RJ, Pellant, M and Pyke, D (2004) Effects of invasive alien plants on fire regimes. BioScience 54, 677688.CrossRefGoogle Scholar
Carvalho, KS, Balch, J and Moutinho, P (2012) Influências de Atta spp. (Hymenoptera: Formicidae) na recuperação da vegetação pós-fogo em floresta de transição amazônica. Acta Amazonica 42, 8188.CrossRefGoogle Scholar
Cintra, R and Sanaiotti, TM (2005) Fire effects on the composition of a bird community in an Amazonian savanna (Brazil). Brazilian Journal of Biology 65, 683695.CrossRefGoogle Scholar
Clarke, KR (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117143.CrossRefGoogle Scholar
Clarke, KR and Ainsworth, M (1993) A method of linking multivariate community structure to environmental variables. Marine Ecology – Progress Series 92, 205219.CrossRefGoogle Scholar
Cochrane, MA and Laurance, WF (2002) Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology 18, 311325.CrossRefGoogle Scholar
Cochrane, MA and Schulze, MD (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31, 216.Google Scholar
Cochrane, MA, Alencar, A, Schulze, MD, Souza, CM, Nepstad, DC, Lefebvre, P and Davidson, EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284, 18321835.CrossRefGoogle ScholarPubMed
Colwell, RK, Mao, CX and Chang, J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85, 27172727.CrossRefGoogle Scholar
Costa, IR, Araújo, FS and Lima-Verde, LW (2004) Flora e aspectos auto-ecológicos de um encrave de cerrado na chapada do Araripe, Nordeste do Brasil. Acta Botanica Brasilica 18, 759770.CrossRefGoogle Scholar
Crawley, MJ (2013) Generalized linear models. In The R Book, 2nd edn. New York, NY: Wiley, pp. 97144.Google Scholar
Davidson, EA, Araujo, AC, Artaxo, P, Balch, JK, Brown, IF, Bustamante, MMC, Coe, MT, Defries, RS, Keller, M, Longo, M, Munger, JW, Schroeder, W, Soares-Filho, BS, Souza, CM Jr and Wofsy, SC (2012) The Amazon basin in transition. Nature 481, 321328.CrossRefGoogle ScholarPubMed
Durigan, G, Baitelo, JB, Franco, GADC and Siqueira, MP (2004) Plantas do cerrado paulista: imagens de uma paisagem ameaçada. São Paulo: Páginas and Letras Editora e Gráfica.Google Scholar
Fearnside, PM (2005) Desmatamento na Amazônia brasileira: história, índices e consequências. Megadiversidade 1, 113123.Google Scholar
Felfili, JM, Nogueira, PE, Junior, MCS, Marimon, BS and Delitti, WBC (2002) Composição florística e fitossociologia do cerrado sentido restrito no município de Água Boa – MT. Acta Botanica Brasilica 16, 103112.CrossRefGoogle Scholar
Grady, JM and Hoffmann, WA (2012) Caught in a fire trap: recurring fire creates stable size equilibria in woody resprouters. Ecology 93, 20522060.CrossRefGoogle Scholar
Gunaratne, AMTA, Gunatilleke, CVS, Gunatilleke, IAUN, Madawala Weerasinghe, HMSP and Burslem, DFRP (2010) Barriers to tree seedling emergence on human-induced grasslands in Sri Lanka. Journal of Applied Ecology 47, 157165.CrossRefGoogle Scholar
Hoffmann, WA, Orthen, B and Nascimento, PKV (2003) Comparative fire ecology of tropical savanna and forest trees. Functional Ecology 17, 720726.CrossRefGoogle Scholar
Instituto Brasileiro de Geografia e Estatística – IBGE (2007) Manual técnico de pedologia, 2nd edn. Rio de Janeiro, Brazil.Google Scholar
Instituto Brasileiro de Geografia e Estatística – IBGE (2009) Mapa de solos do Brasil, 1st edn. Available at http://mapas.ibge.gov.br/en/tematicos/solos.Google Scholar
Instituto Brasileiro de Geografia e Estatística – IBGE (2012) Manual técnico da vegetação Brasileira, 2nd edn. Rio de Janeiro, Brazil.Google Scholar
Kunz, SH, Ivanauskas, NM, Martins, SV and Silva, E (2009) Análise da similaridade florística entre florestas do Alto Rio Xingu, da Bacia Amazônica e do Planalto Central. Revista Brasileira de Botânica 4, 725736.Google Scholar
Leal, IR, Wirth, R and Tabarelli, M (2014) The multiple impacts of leaf-cutting ants and their novel ecological role in human-modified neotropical forests. Biotropica 46, 516528. https://doi.org/10.1111/btp.12126.CrossRefGoogle Scholar
Legendre, P and Legendre, L (2012) Ecological Resemblance. In Legendre, P and Legendre, F (eds), Numerical Ecology. Amsterdam: Elsevier, pp. 265335.CrossRefGoogle Scholar
Magurran, AE (2004) Measuring Biological Diversity. Oxford: Blackwell Science.Google Scholar
Massad, TJ, Balch, JK, Davidson, EA, Brando, PM, Mews, CL, Porto, P, Quintino, R, Vieira, S, Marimon, B and Trumbore, SE (2013) Interactions between repeated fire, nutrients, and insect herbivores affect the recovery of diversity in the southern Amazon. Oecologia 172, 219229.CrossRefGoogle ScholarPubMed
Medeiros, JD (2011) Guia de campo: vegetação do Cerrado 500 espécies. Brasília, DF: Ministério do Meio Ambiente/Secretaria de Biodiversidade e Florestas. 532 pp.Google Scholar
Melo, ACG, Durigan, G and Gorenstein, MR (2007) Efeito do fogo sobre o banco de sementes em faixa de borda de Floresta Estacional Semidecidual, SP, Brasil. Acta Botanica Brasilica 21, 927934.CrossRefGoogle Scholar
Mendonça, RC, Felfili, JM, Walter, BMT, Silva Júnior, MC, Rezende, AV, Filgueiras, TS and Nogueira, PE (1998) Flora vascular do cerrado. In Sano, SM and Almeida, SP (eds), Cerrado: ambiente e flora. Planaltina: EMBRAPA-CPAC, pp. 289556.Google Scholar
Mendonça, MJC, Vera Diaz, M Del C, Nepstad, D, Motta, RS, Alencar, A, Gomes, JC and Ortiz, RA (2004) The economic cost of the use of fire in the Amazon. Ecological Economics 49, 89105.CrossRefGoogle Scholar
Montibeller-Santos, C (2013) Os efeitos de incêndios recorrentes sobre o banco de sementes da floresta de transição Amazônia-Cerrado. Master’s dissertation. Universidade Estadual de Londrina, Brazil.Google Scholar
Nepstad, D, Carvalho, G, Barros, AC, Alencar, A, Capobianco, JP, Bishop, J, Moutinho, P, Lefebvre, P, Silva, UL Jr and Prins, E (2001) Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecology and Management 154, 395407.CrossRefGoogle Scholar
Nepstad, DC, Stickler, CM, Filho, BS and Merry, F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philosophical Transactions of the Royal Society B 363, 17371746.CrossRefGoogle ScholarPubMed
Neto, RMR, Santos, JSS, Silva, MA and Koppe, VC (2010) Potencialidades de uso de espécies arbustivas e arbóreas em diferentes fisionomias de cerrado em Lucas do Rio Verde/MT. Revista de Biologia e Ciências da Terra 10, 113126.Google Scholar
Oksanen, J, Blanchet, FG, Kindt, R, Legendre, P, Minchin, PR, O’Hara, RB, Simpson, GL, Solymos, P, Stevens, MHH and Wagner, H (2013) Vegan: Community Ecology Package. R package version 2.3–1.Google Scholar
Peres, CA, Barlow, J and Haugaasen, T (2003) Vertebrate responses to surface wildfires in a central Amazonian forest. Oryx 37, 113.CrossRefGoogle Scholar
Pinto, JRR and Oliveira-Filho, AT (1999) Perfil florístico da comunidade arbórea de uma floresta de vale no Parque Nacional da Chapada dos Guimarães, Mato Grosso, Brasil. Revista Brasileira de Botanica 22, 5367.Google Scholar
Quesada, CA, Lloyd, J, Schwarz, M, Patiño, S, Baker, TR, Czimczik, C, Fyllas, NM, Martinelli, L, Nardoto, GB, Schmerler, Jet al. (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 15151541.CrossRefGoogle Scholar
Ratter, JA, Bridgewater, S and Ribeiro, JF (2003) Analysis of the floristic composition of the brazilian Cerrado vegetation. III: comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany 60, 57109.CrossRefGoogle Scholar
R Core Team (2014) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/.Google Scholar
Ribeiro-Silva, S, Medeiros, MB, Gomes, BM, Seixas, ENC and Silva, MAP (2012) Angiosperms from the Araripe National Forest, Ceará, Brazil. Check List: Journal of Species List and Distribution 8, 744751.CrossRefGoogle Scholar
Rocha, W, Metcalfe, DB, Doughty, CE, Brando, P, Silvério, D, Halladay, K, Nepstad, DC, Balch, JK and Malhi, Y (2014) Ecosystem productivity and carbon cycling in intact and annually burnt forest at the dry southern limit of the Amazon rainforest (Mato Grosso, Brazil). Plant Ecology and Diversity 7, 2540.CrossRefGoogle Scholar
Rosario, AS and Cecco, RS (2006) Sinopse das espécies de Marlierea Cambess. (Myrtaceae) na Amazônia brasileira. Acta Amazonica 36, 3752.CrossRefGoogle Scholar
Rossiter-Rachor, NA, Setterfield, SA, Douglas, MM, Hutley, LB, Cook, GD and Schmidt, S (2009) Invasive Andropogon gayanus (gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna. Ecological Applications 19, 15461560.CrossRefGoogle ScholarPubMed
Sano, SM, Almeida, SP and Ribeiro, JF (2008) Cerrado: ecologia e flora. Brasília, DF: Embrapa Informação Tecnológica. V. 2, 1279 pp.Google Scholar
Silvério, DV, Brando, PM, Balch, JK, Putz, FE, Nepstad, DC, Oliveira-Santos, C and Bustamante, MMC (2013) Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native Cerrado and exotic pasture grasses. Philosophical transactions of the Royal Society B 368, 20120427.CrossRefGoogle ScholarPubMed
Slik, JWF, Bernard, CS, Van Beek, M, Breman, FC and Eichhorn, KAO (2008) Tree diversity, composition, forest structure and aboveground biomass dynamics after single and repeated fire in a Bornean rain forest. Oecologia 158, 579588.CrossRefGoogle Scholar
Slik, JWF, Breman, FC, Bernard, C, Van Beek, M, Cannon, CH, Eichhorn, KAO and Sidiyasa, K (2010) Fire as a selective force in a Bornean tropical everwet forest. Oecologia 164, 841849.CrossRefGoogle Scholar
Taylor, C (2013) Psychotria. In Lista de espécies da flora do Brasil. Jardim Botânico do Rio de Janeiro. Available at http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB32660.Google Scholar
Teles, FG (2005) Regeneração natural do Cerrado sob trechos ocupados por bambu no Parque Municipal Mário Viana, em Nova Xavantina – MT. Dissertation. Universidade do Estado de Mato Grosso, Brazil.Google Scholar
Thrush, SF, Hewitt, JE, Dayton, PK, Coco, G, Lohrer, AM, Norkko, A, Norkko, J and Chiantore, M (2009) Forecasting the limits of resilience: integrating empirical research with theory. Proceedings of the Royal Society B 276, 32093217.CrossRefGoogle ScholarPubMed
Veldman, JW and Putz, FE (2011) Grass-dominated vegetation, not species-diverse natural savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin. Biological Conservation 144, 14191429.CrossRefGoogle Scholar
Vesk, PA (2006) Plant size and resprouting ability: trading tolerance and avoidance of damage? Journal of Ecology 94, 10271034.CrossRefGoogle Scholar
Supplementary material: File

Cury et al. supplementary material

Cury et al. supplementary material 1

Download Cury et al. supplementary material(File)
File 13.5 KB
Supplementary material: File

Cury et al. supplementary material

Cury et al. supplementary material 2

Download Cury et al. supplementary material(File)
File 19.2 KB
Supplementary material: File

Cury et al. supplementary material

Cury et al. supplementary material 3

Download Cury et al. supplementary material(File)
File 23.6 KB
Supplementary material: File

Cury et al. supplementary material

Cury et al. supplementary material 4

Download Cury et al. supplementary material(File)
File 15.2 KB