Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T01:46:02.085Z Has data issue: false hasContentIssue false

Height–diameter allometry in African monodominant forest close to mixed forest

Published online by Cambridge University Press:  02 July 2021

Grace Jopaul Loubota Panzou*
Affiliation:
Laboratoire de Biodiversité, de Gestion des Ecosystèmes et de l’Environnement (LBGE), Faculté des Sciences et Techniques (Université Marien NGOUABI), BP 69 Brazzaville, Republic of Congo
Yannick Enock Bocko
Affiliation:
Laboratoire de Biodiversité, de Gestion des Ecosystèmes et de l’Environnement (LBGE), Faculté des Sciences et Techniques (Université Marien NGOUABI), BP 69 Brazzaville, Republic of Congo
Alain Yves Mavoungou
Affiliation:
Laboratoire de Biodiversité, de Gestion des Ecosystèmes et de l’Environnement (LBGE), Faculté des Sciences et Techniques (Université Marien NGOUABI), BP 69 Brazzaville, Republic of Congo Ministère de l’Economie Forestière, Brazzaville, Republic of Congo
Jean-Joël Loumeto
Affiliation:
Laboratoire de Biodiversité, de Gestion des Ecosystèmes et de l’Environnement (LBGE), Faculté des Sciences et Techniques (Université Marien NGOUABI), BP 69 Brazzaville, Republic of Congo
*
Author for correspondence:*Grace Jopaul Loubota Panzou, Email: [email protected]

Abstract

African monodominant forests are frequently formed by Gilbertiodendron dewevrei (De Wild.) J. Leonard and commonly found close to mixed forests. However, previous studies have ignored differences between these two forest types in height–diameter allometry, which is extremely important for aboveground biomass (AGB) estimates. This study aims to evaluate the performance of height–diameter models and their effects on height attributes and AGB estimations in African monodominant and mixed forests. Four 1-ha plots divided in 16 subplots (0.25 ha) were installed in each forest type in northern Republic of Congo. We measured diameter of all trees ≥ 10 cm diameter for each subplot and we measured the height of 264 trees over a large range of 7–64 m in two forest types. There was a significant difference in height–diameter allometry between two forest types and trees were taller and had greater AGB in monodominant forests than in mixed forests. Two height–diameter models from the literature generated the lowest error values when predicting tree height and AGB in mixed forests, whereas no model derived from the literature was appropriate for monodominant forests. The variation in height–diameter allometry between monodominant and mixed forests influences AGB estimates that have practical implications for carbon monitoring.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achard, F, Beuchle, R, Mayaux, P, Stibig, H-J, Bodart, C, Brink, A, Carboni, S, Desclée, B, Donnay, F, Eva, HD, Lupi, A, Raši, R, Seliger, R and Simonetti, D (2014). Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Global Change Biology 20, 25402554.CrossRefGoogle ScholarPubMed
Banin, L, Feldpausch, TR, Phillips, OL, Baker, TR, Lloyd, J, Affum-Baffoe, K, Arets, EJMM, Berry, NJ, Bradford, M, Brienen, RJW, Davies, S, Drescher, M, Higuchi, N, Hilbert, DW, Hladik, A, Iida, Y, Salim, KA, Kassim, AR, King, DA, Lopez-Gonzalez, G, Metcalfe, D, Nilus, R, Peh, KS-H, Reitsma, JM, Sonké, B, Taedoumg, H, Tan, S, White, L, Wöll, H and Lewis, SL (2012). What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography 21, 11791190.CrossRefGoogle Scholar
Burnham, KP & Anderson, DR (2002). Model Selection and Multimodel Inference. A Practical Information – Theoretic Approach, 2nd Edn. New York: Springer-Verlag New York.Google Scholar
Cassart, B, Basia, AA, Titeux, H, Andivia, E and Ponette, Q (2017). Contrasting patterns of carbon sequestration between Gilbertiodendron dewevrei monodominant forests and Scorodophloeus zenkeri mixed forests in the Central Congo basin. Plant and soil 414, 309326.CrossRefGoogle Scholar
Chave, J, Andalo, C, Brown, S, Cairns, MA, Chambers, JQ, Eamus, D, Fölster, H, Fromard, F, Higuchi, N, Kira, T, Lescure, J-P, Nelson, BW, Ogawa, H, Puig, H, Riéra, B and Yamakura, T (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 8799.CrossRefGoogle ScholarPubMed
Chave, J, Coomes, D, Jansen, S, Lewis, SL, Swenson, NG and Zanne, AE (2009) Towards a worldwide wood economics spectrum. Ecology Letters 12, 351366.CrossRefGoogle ScholarPubMed
Chave, J, Réjou-Méchain, M, Búrquez, A, Chidumayo, E, Colgan, MS, Delitti, WBC, Duque, A, Eid, T, Fearnside, PM, Goodman, RC, Henry, M, Martínez-Yrízar, A, Mugasha, WA, Muller-Landau, HC, Mencuccini, M, Nelson, BW, Ngomanda, A, Nogueira, EM, Ortiz-Malavassi, E, Pélissier, R, Ploton, P, Ryan, CM, Saldarriaga, JG and Vieilledent, G (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20, 31773190.CrossRefGoogle ScholarPubMed
Djuikouo, K, Doucet, J, Nguembou, CK, Lewis, SL and Sonke, B (2010) Diversity and aboveground biomass in three tropical forest types in the Dja Biosphere Reserve, Cameroon. African Journal of Ecology 48, 10531063.CrossRefGoogle Scholar
Djuikouo, MNK, Peh, KS, Nguembou, CK, Doucet, J, Lewis, SL, No, M, Lewis, SL and Sonké, B (2014) Stand structure and species co-occurrence in mixed and monodominant Central African tropical forests. Journal of Tropical Ecology 30, 447455.CrossRefGoogle Scholar
Fayolle, A, Engelbrecht, B, Freycon, V, Mortier, F, Swaine, M, Réjou-Méchain, M, Doucet, J-L, Fauvet, N, Cornu, G and Gourlet-Fleury, S (2012) Geological Substrates Shape Tree Species and Trait Distributions in African Moist Forests. PLoS ONE 7, e42381.CrossRefGoogle ScholarPubMed
Fayolle, A, Loubota Panzou, GJ, Drouet, T, Swaine, MD, Bauwens, S, Vleminckx, J, Biwole, A, Lejeune, P and Doucet, JL (2016) Taller trees, denser stands and greater biomass in semi-deciduous than in evergreen lowland central African forests. Forest Ecology and Management 374, 4250.CrossRefGoogle Scholar
Fayolle, A, Ngomanda, A, Mbasi, M, Barbier, N, Bocko, Y, Boyemba, F, Couteron, P, Fonton, N, Kamdem, N, Katembo, J, Kondaoule, HJ, Loumeto, J, Maïdou, HM, Mankou, G, Mengui, T, Mofack, GI, Moundounga, C, Moundounga, Q, Nguimbous, L, Nsue Nchama, N, Obiang, D, Ondo Meye Asue, F, Picard, N, Rossi, V, Senguela, YP, Sonké, B, Viard, L, Yongo, OD, Zapfack, L and Medjibe, VP (2018) A regional allometry for the Congo basin forests based on the largest ever destructive sampling. Forest Ecology and Management 430, 228240.CrossRefGoogle Scholar
Fayolle, A, Picard, N, Doucet, JL, Swaine, M, Bayol, N, Bénédet, F and Gourlet-Fleury, S (2014a) A new insight in the structure, composition and functioning of central African moist forests. Forest Ecology and Management 329, 195205.CrossRefGoogle Scholar
Fayolle, A, Swaine, MD, Bastin, JF, Bourland, N, Comiskey, JA, Dauby, G, Doucet, JL, Gillet, JF, Gourlet-Fleury, S, Hardy, OJ, Kirunda, B, Kouamé, FN and Plumptre, AJ (2014b) Patterns of tree species composition across tropical African forests. Journal of Biogeography 41, 23202331.CrossRefGoogle Scholar
Feldpausch, TR, Banin, L, Phillips, OL, Baker, TR, Lewis, SL, Quesada, CA, Affum-Baffoe, K, Arets, EJMM, Berry, NJ, Bird, M, Brondizio, ES, de Camargo, P, Chave, J, Djagbletey, G, Domingues, TF, Drescher, M, Fearnside, PM, França, MB, Fyllas, NM, Lopez-Gonzalez, G, Hladik, A, Higuchi, N, Hunter, MO, Iida, Y, Salim, KA, Kassim, AR, Keller, M, Kemp, J, King, DA, Lovett, JC, Marimon, BS, Marimon-Junior, BH, Lenza, E, Marshall, AR, Metcalfe, DJ, Mitchard, ETA, Moran, EF, Nelson, BW, Nilus, R, Nogueira, EM, Palace, M, Patiño, S, Peh, KS-H, Raventos, MT, Reitsma, JM, Saiz, G, Schrodt, F, Sonké, B, Taedoumg, HE, Tan, S, White, L, Wöll, H and Lloyd, J (2011) Height-diameter allometry of tropical forest trees. Biogeosciences 8, 10811106.CrossRefGoogle Scholar
Feldpausch, TR, Lloyd, J, Lewis, SL, Brienen, RJW, Gloor, M, Monteagudo Mendoza, A, Lopez-Gonzalez, G, Banin, L, Abu Salim, K, Affum-Baffoe, K, Alexiades, M, Almeida, S, Amaral, I, Andrade, A, Aragão, LEOC, Araujo Murakami, A, Arets, EJM, Arroyo, L, Aymard, CGA, Baker, TR, Bánki, OS, Berry, NJ, Cardozo, N, Chave, J, Comiskey, JA, Alvarez, E, De Oliveira, A, Di Fiore, A, Djagbletey, G, Domingues, TF, Erwin, TL, Fearnside, PM, França, MB, Freitas, MA, Higuchi, N, Honorio, CE, Iida, Y, Jiménez, E, Kassim, AR, Killeen, TJ, Laurance, WF, Lovett, JC, Malhi, Y, Marimon, BS, Marimon-Junior, BH, Lenza, E, Marshall, AR, Mendoza, C, Metcalfe, DJ, Mitchard, ETA, Neill, DA, Nelson, BW, Nilus, R, Nogueira, EM, Parada, ASH, Peh, K, Pena Cruz, A, Peñuela, MC, Pitman, NCA, Prieto, A, Quesada, CA, Ramírez, F, Ramírez-Angulo, H, Reitsma, JM, Rudas, A, Saiz, G, Salomão, RP, Schwarz, M, Silva, N, Silva-Espejo, JE, Silveira, M, Sonké, B, Stropp, J, Taedoumg, HE, Tan, S, Ter Steege, H, Terborgh, J, Torello-Raventos, M, Van Der Heijden, GMF, Vásquez, R, Vilanova, E, Vos, VA, White, L, Willcock, S, Woell, H and Phillips, OL (2012) Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 33813403.CrossRefGoogle Scholar
Gibbs, HK, Brown, S, Niles, JO and Foley, JA (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters 2, 045023.CrossRefGoogle Scholar
Hall, JS, Harris, DJ, Saltonstall, K, Medjibe, VDP, Ashton, MS and Turner, BL (2019). Resource acquisition strategies facilitate Gilbertiodendron dewevrei monodominance in African lowland forests. Journal of Ecology 00, 116.Google Scholar
Hart, TB, Hart, JA and Murphy, PG (1989). Monodominant and Species-Rich forests of the humid tropics: causes for their co-occurrence. The American Naturalist 133, 613633.CrossRefGoogle Scholar
Hulshof, CM, Swenson, NG and Weiser, MD (2015). Tree height – diameter allometry across the United States. Ecology and Evolution 5, 11931204.CrossRefGoogle ScholarPubMed
Kearsley, E, de Haulleville, T, Hufkens, K, Kidimbu, A, Toirambe, B, Baert, G, Huygens, D, Kebede, Y, Defourny, P, Bogaert, J, Beeckman, H, Steppe, K, Boeckx, P and Verbeeck, H (2013) Conventional tree height-diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nature Communications 4, 2269.CrossRefGoogle ScholarPubMed
Kearsley, E, Hufkens, K, Verbeeck, H, Bauters, M, Beeckman, H, Boeckx, P and Huygens, D (2019) Large-sized rare tree species contribute disproportionately to functional diversity in resource acquisition in African tropical forest. Ecology and Evolution 9, 43494361.CrossRefGoogle ScholarPubMed
Kearsley, E, Moonen, PC, Hufkens, K, Doetterl, S, Lisingo, J, Boyemba Bosela, F, Boeckx, P, Beeckman, H and Verbeeck, H (2017a). Model performance of tree height-diameter relationships in the central Congo Basin. Annals of Forest Science 74, 7.CrossRefGoogle Scholar
Kearsley, E, Verbeeck, H, Hufkens, K, Van de Perre, F, Doetterl, S, Baert, G, Beeckman, H, Boeckx, P and Huygens, D (2017b). Functional community structure of African monodominant Gilbertiodendron dewevrei forest influenced by local environmental filtering. Ecology and Evolution 7, 295304.CrossRefGoogle ScholarPubMed
Ledo, A, Cornulier, T, Illian, JB, Iida, Y, Kassim, AR and Burslem, DFRP (2016). Re-evaluation of individual diameter: Height allometric models to improve biomass estimation of tropical trees. Ecological Applications 26, 23742380.CrossRefGoogle ScholarPubMed
Lewis, SL, Lopez-Gonzalez, G, Sonké, B, Affum-Baffoe, K, Baker, TR, Ojo, LO, Phillips, OL, Reitsma, JM, White, L and Comiskey, JA (2009). Increasing carbon storage in intact African tropical forests. Nature 457, 10031006.CrossRefGoogle ScholarPubMed
Lewis, SL, Sonke, B, Sunderland, T, Begne, SK, Lopez-Gonzalez, G, van der Heijden, GMF, Phillips, OL, Affum-Baffoe, K, Banin, L and Bastin, J-F (2013) Aboveground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences 368, 20120295.CrossRefGoogle Scholar
Ligot, G, Gourlet-Fleury, S, Ouédraogo, D-Y, Morin, X, Bauwens, S, Baya, F, Brostaux, Y, Doucet, J-L and Fayolle, A (2018). The limited contribution of large trees to annual biomass production in an old-growth tropical forest. Ecological Applications 28, 12731281.CrossRefGoogle Scholar
Loubota Panzou, GJ, Doucet, J-L, Loumeto, J-J, Biwole, A, Bauwens, S and Fayolle, A (2016) Biomasse et stocks de carbone des forêts tropicales africaines (synthèse bibliographique). Biotechnology, Agronomy, Society and Environment 20, 508522.Google Scholar
Loubota Panzou, GJ, Fayolle, A, Feldpausch, TR, Ligot, G, Doucet, JL, Forni, E, Zombo, I, Mazengue, M, Loumeto, JJ and Gourlet-Fleury, S (2018a). What controls local-scale aboveground biomass variation in central Africa? Testing structural, composition and architectural attributes. Forest Ecology and Management 429, 570578.CrossRefGoogle Scholar
Loubota Panzou, GJ, Ligot, G, Gourlet-Fleury, S, Doucet, JL, Forni, E, Loumeto, JJ and Fayolle, A (2018b). Architectural differences associated with functional traits among 45 coexisting tree species in Central Africa. Functional Ecology 32, 25832593.CrossRefGoogle Scholar
Makana, J-R, Ewango, CN, McMahon, SM, Thomas, SC, Hart, TB and Condit, R (2011) Demography and biomass change in monodominant and mixed old-growth forest of the Congo. Journal of Tropical Ecology 27, 447461.CrossRefGoogle Scholar
Molto, Q, Hérault, B, Boreux, J-J, Daullet, M, Rousteau, A and Rossi, V (2014). Predicting tree heights for biomass estimates in tropical forests – a test from French Guiana. Biogeosciences 11, 31213130.CrossRefGoogle Scholar
Molto, Q, Rossi, V and Blanc, L (2013). Error propagation in biomass estimation in tropical forests. Methods in Ecology and Evolution 4, 175183.CrossRefGoogle Scholar
Pan, Y, Birdsey, RA, Fang, J, Houghton, R, Kauppi, PE, Kurz, WA, Phillips, OL, Shvidenko, A, Lewis, SL, Canadell, JG, Ciais, P, Jackson, RB, Pacala, SW, McGuire, AD, Piao, S, Rautiainen, A, Sitch, S and Hayes, D (2011). A large and persistent carbon sink in the world’s forests. Science 333, 988993.CrossRefGoogle ScholarPubMed
Peh, KSH, Lewis, SL and Lloyd, J (2011a). Mechanisms of monodominance in diverse tropical tree-dominated systems. Journal of Ecology 99, 891898.CrossRefGoogle Scholar
Peh, KSH, Sonké, B, Lloyd, J, Quesada, CA and Lewis, SL (2011b). Soil does not explain monodominance in a Central African Tropical forest. PLoS ONE 6, e16996.CrossRefGoogle ScholarPubMed
R Core Team (2020). R: A language and environment for statistical computing, version 4.0.2. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Réjou-Méchain, M, Tanguy, A, Piponiot, C, Chave, J and Hérault, B (2017) Biomass: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution 8, 11631167.CrossRefGoogle Scholar
Saatchi, SS, Harris, NL, Brown, S, Lefsky, M, Mitchard, ET, Salas, W, Zutta, BR, Buermann, W, Lewis, SL, Hagen, S and Petrova, S (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences 108, 98999904.CrossRefGoogle Scholar
Slik, JWF, Paoli, G, McGuire, K, Amaral, I, Barroso, J, Bastian, M, Blanc, L, Bongers, F, Boundja, P, Clark, C, Collins, M, Dauby, G, Ding, Y, Doucet, J-L, Eler, E, Ferreira, L, Forshed, O, Fredriksson, G, Gillet, J-F, Harris, D, Leal, M, Laumonier, Y, Malhi, Y, Mansor, A, Martin, E, Miyamoto, K, Araujo-Murakami, A, Nagamasu, H, Nilus, R, Nurtjahya, E, Oliveira, Á, Onrizal, O, Parada-Gutierrez, A, Permana, A, Poorter, L, Poulsen, J, Ramirez-Angulo, H, Reitsma, J, Rovero, F, Rozak, A, Sheil, D, Silva-Espejo, J, Silveira, M, Spironelo, W, ter Steege, H, Stevart, T, Navarro-Aguilar, GE, Sunderland, T, Suzuki, E, Tang, J, Theilade, I, van der Heijden, G, van Valkenburg, J, Van Do, T, Vilanova, E, Vos, V, Wich, S, Wöll, H, Yoneda, T, Zang, R, Zhang, M-G and Zweifel, N (2013) Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography 22, 12611271.CrossRefGoogle Scholar
Sullivan, MJP, Lewis, SL, Hubau, W, Qie, L, Baker, TR, Banin, LF, Chave, J, Cuni-Sanchez, A, Feldpausch, TR, Lopez-Gonzalez, G, Arets, E, Ashton, P, Bastin, JF, Berry, NJ, Bogaert, J, Boot, R, Brearley, FQ, Brienen, R, Burslem, DFRP, de Canniere, C, Chudomelová, M, Dančák, M, Ewango, C, Hédl, R, Lloyd, J, Makana, JR, Malhi, Y, Marimon, BS, Junior, BHM, Metali, F, Moore, S, Nagy, L, Vargas, PN, Pendry, CA, Ramírez-Angulo, H, Reitsma, J, Rutishauser, E, Salim, KA, Sonké, B, Sukri, RS, Sunderland, T, Svátek, M, Umunay, PM, Martinez, RV, Vernimmen, RRE, Torre, EV, Vleminckx, J, Vos, V and Phillips, OL (2018) Field methods for sampling tree height for tropical forest biomass estimation. Methods in Ecology and Evolution 9, 11791189.CrossRefGoogle ScholarPubMed
Torti, SD, Coley, PD and Kursar, TA (2001). Causes and consequences of monodominance in tropical Lowland forests. The American Naturalist 157, 141153.CrossRefGoogle ScholarPubMed
Umunay, PM, Gregoire, TG and Ashton, MS (2017). Estimating biomass and carbon for Gilbertiodendron dewevrei (De Wild) Leonard, a dominant canopy tree of African tropical Rainforest: Implications for policies on carbon sequestration. Forest Ecology and Management 404, 3144.CrossRefGoogle Scholar
White, F (1983) The Vegetation of Africa: A Descriptive Memoir to Accompany the UNESCO/AETFAT/UNSO Vegetation Map of Africa. Paris, France: ORSTOM – UNESCO.Google Scholar
Wickham, H (2016) ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag New York.CrossRefGoogle Scholar
Zanne, AE, Lopez-Gonzalez, G, Coomes, DA, Illic, J, Jansen, S, Lewis, SL, Miller, RB, Swenson, NG, Wiemann, MC and Chave, J (2009) Data from: Towards a worldwide wood economics spectrum.Google Scholar
Supplementary material: File

Loubota Panzou et al. supplementary material

Tables S1-S2

Download Loubota Panzou et al. supplementary material(File)
File 35.3 KB