Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T00:14:08.908Z Has data issue: false hasContentIssue false

Frugivorous weevils are too rare to cause Janzen–Connell effects in New Guinea lowland rain forest

Published online by Cambridge University Press:  07 August 2014

Richard Ctvrtecka*
Affiliation:
Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
Katerina Sam
Affiliation:
Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic Biology Centre, Academy of Sciences of the Czech Republic, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
Erik Brus
Affiliation:
The New Guinea Binatang Research Center, P. O. Box 604, Madang, Papua New Guinea
George D. Weiblen
Affiliation:
Bell Museum and Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Avenue, St Paul, MN 55108, USA
Vojtech Novotny
Affiliation:
Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic Biology Centre, Academy of Sciences of the Czech Republic, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
*
1Corresponding author. Email: [email protected]

Abstract:

A community of frugivorous weevils was studied by quantitative rearing of 57 weevil species represented by 10485 individuals from 326 woody plant species in lowland rain forest in Papua New Guinea. Only fruits from 35% of plant species were attacked by weevils. On average, weevils were reared from only 1 in 33 fruits and 1 kg of fruit was attacked by 2.51 individuals. Weevil host specificity was relatively high: 42% of weevil species fed on a single plant genus, 19% on a single plant family and only 16% were reared from more than one family. However, monophagous specialists represented only 23% of all reared individuals. The average 1 kg of fruits was infested by 1.84 individuals of generalist weevils (feeding on allogeneric or allofamilial host species), 0.52 individual of specialists (feeding on a single or several congeneric species), and 0.15 individual of unknown host specificity. Large-seeded fruits with thin mesocarp tended to host specialist species whereas those with thick, fleshy mesocarp were often infested with both specialists and generalists. Weevils tended to avoid small-seeded, fleshy fruits. The low incidence of seed damage (3% of seeds) suggests that weevils are unlikely to play a major role in regulating plant populations via density-dependent mortality processes outlined by the Janzen–Connell hypothesis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALONSO-ZARAZAGA, M. A. & LYAL, C. H. C. 1999. A world catalogue of families and genera Curculionoidea (Insecta: Coleoptera) (excepting Scolytidae and Platypodidae). Entomopraxis, Barcelona. 315 pp.Google Scholar
ALVES-COSTA, C. P. & KNOGGE, C. H. 2005. Larval competition in weevils Revena rubiginosa (Coleoptera: Curculionidae) preying on seeds of the palm Syagrus romanzoffiana (Arecaceae). Naturwissenschaften 92:265268.CrossRefGoogle ScholarPubMed
ATKINSON, W. D. 1985. Coexistence of Australian rainforest Diptera breeding in fallen fruit. Journal of Animal Ecology 54:507518.CrossRefGoogle Scholar
BASSET, Y. 1991. The taxonomic composition of the arthropod fauna associated with an Australian rainforest tree. Australian Journal of Zoology 39:171190.CrossRefGoogle Scholar
BONAL, R. & MUNOZ, A. 2009. Seed weevils living on the edge: pressures and conflicts over body size in the endoparasitic Curculio larvae. Ecological Entomology 34:304309.CrossRefGoogle Scholar
BOROWIEC, L. 1987. The genera of seed beetles (Coleoptera, Bruchidae). Bulletin Entomologique de Pologne 57:3207.Google Scholar
CONNELL, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Pp. 298312 in den Boer, P. J. & Gradwell, G. R. (eds.). Dynamics of populations. Pudoc, Wageningen.Google Scholar
COPELAND, R. S., LUKE, Q. & WHARTON, R. A. 2009. Insects reared from wild fruits of Kenya. Journal of East African Natural History 98:1166.CrossRefGoogle Scholar
DELOBEL, B. & DELOBEL, A. 2006. Dietary specialization in European species groups of seed beetles (Coleoptera: Bruchidae: Bruchinae). Oecologia 149:428443.CrossRefGoogle ScholarPubMed
EHRLEN, J. & ERIKSSON, O. 1993. Toxicity in fleshy fruits – a non-adaptative trait? Oikos 66:107113.CrossRefGoogle Scholar
FRECKLETON, R. P. & LEWIS, O. T. 2006. Pathogens, density dependence and the coexistence of tropical trees. Proceeding of the Royal Society B – Biological Sciences 273:29092916.CrossRefGoogle ScholarPubMed
GRIMBACHER, P. S., NICHOLS, C., WARDHAUGH, C. W. & STORK, N. E. 2014. Low host specificity of beetles associated with fruit falls in lowland tropical rainforest of north-east Australia. Australian Journal of Entomology 53:7582.CrossRefGoogle Scholar
JANZEN, D. H. 1970. Herbivores and the number of tree species in tropical forests. American Naturalist 104:501528.CrossRefGoogle Scholar
JANZEN, D. H. 1971. Seed predation by animals. Annual Review of Ecology and Systematics 2: 465492.CrossRefGoogle Scholar
JANZEN, D. H. 1980. Specificity of seed-attacking beetles in a Costa Rican deciduous forest. Journal of Ecology 68:929952.CrossRefGoogle Scholar
HERRERA, C. M. 1984. Selective pressure on fruit seediness: differential predation of fly larvae on the fruits of Berberis hispanica. Oikos 42:166170.CrossRefGoogle Scholar
HOTHORN, T., HORNIK, K. & ZEILEIS, A. 2006. Unbiased recursive partitioning: a conditional inference framework. Journal of Computational and Graphical Statistics 15:651674.CrossRefGoogle Scholar
INOUYE, B. D. 1999. Integrating nested spatial scales: implications for the coexistence of competitors on a patchy resource. Journal of Animal Ecology 68:150162.CrossRefGoogle Scholar
KERGOAT, G. J., DELOBEL, A., FEDIERE, G., RU, B. L. & SILVAIN, J. F. 2005. Both host-plant phylogeny and chemistry have shaped the African seed-beetle radiation. Molecular Phylogenetics and Evolution 35:602611.CrossRefGoogle ScholarPubMed
KESTRING, D., MENEZES, L. C., TOMAZ, C. A., LIMA, G. P. & ROSSI, M. N. 2009. Relationship among phenolic contents, seed predation and physical seed traits in Mimosa bimucronata plants. Journal of Plant Biology 52:569576.CrossRefGoogle Scholar
LAIDLAW, M., KITCHING, R., GOODALL, K., SMALL, A. & STORK, N. 2007. Temporal and spatial variation in an Australian tropical rainforest. Austral Ecology 32:1020.CrossRefGoogle Scholar
LEWINSOHN, T. M. & ROSLIN, M. 2008. Four ways towards tropical herbivore megadiversity. Ecology Letters 11:398416.CrossRefGoogle ScholarPubMed
LEWIS, O. T. & GRIPENBERG, S. 2008. Insect seed predators and environmental change. Journal of Applied Ecology 45:15931599.CrossRefGoogle Scholar
LYAL, C. H. C. & CURRAN, L. M. 2000. Seed-feeding beetles of the weevil tribe Mecysolobini (Insecta: Coleoptera: Curculionidae) developing in seeds of trees in the Dipterocarpaceae. Journal of Natural History 34:17431847.CrossRefGoogle Scholar
LYAL, C. H. C. & CURRAN, L. M. 2003. More than black and white: new genus of nanophyinae seed predators of Dipterocarpaceae and a review of Meregallia Alonso-Zarazaga (Coleoptera: Curculionoidea). Journal of Natural History 37:57105.CrossRefGoogle Scholar
McALPINE, J. R., KEIG, G. & FALLS, R. 1983. Climate of Papua New Guinea. CSIRO and Australian National University Press, Canberra. 200 pp.Google Scholar
MILLER, M. F. 1996. Acacia seed predation by bruchids in an African savanna ecosystem. Journal of Applied Ecology 33:11371144.CrossRefGoogle Scholar
MITCHELL, R. 1977. Bruchid beetles and seed packaging by Palo Verde. Ecology 58:644651.CrossRefGoogle Scholar
NAKAGAWA, M., ITIOKA, T., MOMOSE, K., YUMOTO, T., KOMAI, F., MORIMOTO, K., JORDAL, B. H., KATO, M., KALIANG, H., HAMID, A. A., INOUE, T. & NAKASHIZUKA, T. 2003. Resource use of insect seed predators during general flowering and seeding events in a Bornean dipterocarp rain forest. Bulletin of Entomological Research 93:455466.CrossRefGoogle Scholar
NOVOTNY, V. & BASSET, Y. 2005. Host specificity of insect herbivores in tropical forests. Proceedings of the Royal Society, London, Biological Sciences 272:10831090.CrossRefGoogle ScholarPubMed
NOVOTNY, V., CLARKE, A. R., DREW, R. A. I., BALAGAWI, S. & CLIFFORD, B. 2005. Host specialization and species richness of fruit flies (Diptera: Tephritidae) in a New Guinea rain forest. Journal of Tropical Ecology 21:6777.CrossRefGoogle Scholar
NOVOTNY, V., DROZD, P., MILLER, S. E., KULFAN, M., JANDA, M., BASSET, Y. & WEIBLEN, G. D. 2006. Why are there so many species of herbivorous insects in tropical rainforests? Science 313:11151118.CrossRefGoogle ScholarPubMed
NOVOTNY, V., MILLER, S. E., BAJE, L., BALAGAWI, S., BASSET, Y., CIZEK, L., CRAFT, K. J., DEM, F., DREW, R. A. I., HULCR, J., LEPS, J., LEWIS, O., POKON, R., STEWART, A. J. A. & WEIBLEN, G. D. 2010. Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest. Journal of Animal Ecology 79:11931203.CrossRefGoogle ScholarPubMed
NOVOTNY, V., MILLER, S. E., HRCEK, J., BAJE, L., BASSET, Y., LEWIS, O. T., STEWART, A. J. A. & WEIBLEN, G. D. 2012. Insects on plants: explaining the paradox of low diversity within specialist herbivore guilds. American Naturalist 179:351362.CrossRefGoogle ScholarPubMed
PAIJMANS, K. 1976. New Guinea vegetation. Australian National University Press, Canberra. 213 pp.Google Scholar
PINZON-NAVARRO, S., BARRIOS, H., MURRIA, C., LYAL, C. H. C. & VOGLER, A. P. 2010. DNA-based taxonomy of larval stages reveals huge unknown species diversity in neotropical seed weevils (genus Conotrachelus): relevance to evolutionary ecology. Molecular Phylogenetics and Evolution 56:281293.CrossRefGoogle ScholarPubMed
RADER, R. & KROCKENBERGER, A. 2007. The impact of consumption of fruit by vertebrate and invertebrate frugivores on the germination success of an Australian rainforest seed. Austral Ecology 32:8692.CrossRefGoogle Scholar
RAMIREZ, N. & TRAVESET, A. 2010. Predispersal seed predation by insects in the Venezuelan central plain: overall patterns and traits that influence its biology and taxonomic groups. Perspectives in Plant Ecology, Evolution and Systematics 12:193209.CrossRefGoogle Scholar
REHR, S. S., BELL, E. A., JANZEN, D. H. & FEENY, P. P. 1973. Insecticidal amino-acids in legume seeds. Biochemical Systematics and Ecology 1:6367.CrossRefGoogle Scholar
ROSENTHAL, G. A., JANZEN, D. H. & DAHLMAN, D. L. 1977. Degradation and detoxification of canavanine by a specialist seed predator. Science 196:658660.CrossRefGoogle Scholar
SALLABANKS, R. & COURTNEY, S. P. 1992. Frugivory, seed predation and insect–vertebrate interactions. Annual Review of Entomology 37:377400.CrossRefGoogle ScholarPubMed
SIEMENS, D. H., JOHNSON, C. D. & RIBARDO, K. J. 1992. Alternative seed defense mechanisms in congeneric plants. Ecology 73:21522166.CrossRefGoogle Scholar
SHORTHOUSE, J. D., WOOL, D. & RAMAN, A. 2005. Gall-inducing insects – nature's most sophisticated herbivores. Basic and Applied Ecology 6:407411.CrossRefGoogle Scholar
SOUTHWOOD, T. R. E., MORAN, V. C. & KENNEDY, C. E. J. 1982. The richness, abundance and biomass of the arthropod communities on trees. Journal of Animal Ecology 51:635649.CrossRefGoogle Scholar
WHITFELD, T. J. S., KRESS, W. J., ERICKSON, D. L. & WEIBLEN, G. D. 2012. Change in community phylogenetic structure during tropical forest succession: evidence from New Guinea. Ecography 35:821830.CrossRefGoogle Scholar
WESTCOTT, D. A. & GRAHAM, D. L. 2000. Patterns of movement and seed dispersal of a tropical frugivore. Oecologia 122:249257.CrossRefGoogle ScholarPubMed
WILLSON, M. F., IRVINE, A. K. & WALSH, N. G. 1989. Vertebrate dispersal syndromes in some Australian and New-Zealand plant-communities with geographic comparisons. Biotropica 21:133147.CrossRefGoogle Scholar
WRIGHT, S. J. 1983. The dispersion of eggs by bruchid beetle among Scheelea palm seeds and the effects of distance to the parent palm. Ecology 64:10161021.CrossRefGoogle Scholar
WRIGHT, S. J. 1990. Cumulative satiation of a seed predator over the fruiting season of its host. Oikos 58:272276.CrossRefGoogle Scholar
WRIGHT, S. J. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:114.CrossRefGoogle ScholarPubMed