Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T13:39:23.306Z Has data issue: false hasContentIssue false

Floral biology, breeding systems and population genetic structure of three climbing Bauhinia species (Leguminosae: Caesalpinioideae) in Hong Kong, China

Published online by Cambridge University Press:  01 March 2009

Carol P. Y. Lau
Affiliation:
Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
Richard M. K. Saunders
Affiliation:
Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
Lawrence Ramsden*
Affiliation:
Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
*
1Corresponding author. Email [email protected]

Abstract:

The pollination ecology, breeding system and population genetic structure of three climbing Bauhinia species B. championii (4 populations, 23 individuals), B. corymbosa (2 populations, 25 individuals) and B. glauca (8 populations, 76 individuals) were studied in Hong Kong, southern China. We hypothesize that the climbing Bauhinia species will attract targeted pollinators to achieve out-cross success and high levels of self-incompatibility will be expected to maintain diversity, with local population expansion relying on vegetative propagation. All three species have inflorescences consisting of numerous small, pale, fragrant flowers, which show diurnal anthesis. Field observations revealed that all three species are predominantly pollinated by bees (particularly Apis mellifera) and butterflies (Graphium and Papilio species), although B. championii is also pollinated by wasps and flies. Bauhinia corymbosa and B. glauca have sucrose-dominant nectar, whereas B. championii has hexose-dominant nectar. In controlled-pollination experiments fruit and seed set were generally highest following artificial out-crossing. The index of self-incompatibility of B. championii is 1.07, indicating self-compatibility; B. corymbosa and B. glauca were obligately self-incompatible. The population genetic structure and variation of the Bauhinia species was investigated using ISSR markers. Generally the three species have moderate within-population (mean HS = 0.206) and high among-population genetic variation (mean GST = 0.284). No correlation exists between the geographical and genetic distance, possibly due to the small local population size. All three species showed high levels of heterozygosity as expected for predominantly out-crossing long-lived K-selected species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ARROYO, M. T. K. 1981. Breeding systems and pollination biology in Leguminosae. Pp. 723769 in Polhill, R. M. & Raven, P. H. (eds.). Advances in legume systematics. part 2. Royal Botanic Gardens, Kew.Google Scholar
BAKER, H. G. & BAKER, I. 1990. The predictive value of nectar chemistry to the recognition of pollinator types. Israel Journal of Botany 39:157166.Google Scholar
BAWA, K. S., BULLOCK, S. H., PERRY, D. R., COVILLE, R. E. & GRAYUM, M. H. 1985. Reproductive biology of tropical lowland rain forest trees. II. Pollination systems. American Journal of Botany 72:346356.CrossRefGoogle Scholar
BERGALLO, H. G. 1990. Floral biology and pollination of Bauhinia bongardii in Serra Carajás, Pará. Revista Brasileira de Biologia 50:401405.Google Scholar
CAI, Z. Q., POORTER, L., CAO, K. F. & BONGERS, F. 2007. Seedling growth strategies in Bauhinia species: comparing lianas and trees. Annals of Botany 100:831838.CrossRefGoogle ScholarPubMed
CRUDEN, R. W. 1977. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:3246.CrossRefGoogle ScholarPubMed
DAFNI, A. 1992. Pollination ecology: a practical approach. Oxford University Press, Oxford. 250 pp.Google Scholar
DAWSON, I. K., SIMONS, A. J., WAUGH, R. & POWELL, W. 1995. Diversity and genetic differentiation among subpopulations of Gliricidia sepium revealed by PCR-based assays. Heredity 74:1018.CrossRefGoogle ScholarPubMed
DEWALT, S. J., SCHNITZER, S. A. & DENSLOW, J. S. 2000. Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. Journal of Tropical Ecology 16:119.CrossRefGoogle Scholar
DOYLE, J. 1991. DNA protocols for plants – CTAB total DNA isolation. Pp. 283293 in Hewitt, G. M. & Johnston, A. (eds.). Molecular techniques in taxonomy. Springer, Berlin.CrossRefGoogle Scholar
ENDRESS, P. K. 1994. Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge. 511 pp.Google Scholar
FAEGRI, K. & VAN DER PIJL, L. 1979. The principles of pollination ecology. Pergamon, Oxford. 242 pp.Google Scholar
GENTRY, A. H. 1983. Dispersal ecology and diversity in neotropical forest communities. Sonderbände des Naturwissenschaftlichen Vereins in Hamburg 7:303314.Google Scholar
GENTRY, A. H. 1991a. The distribution and evolution of climbing plants. Pp. 351 in Putz, F. E. & Mooney, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
GENTRY, A. H. 1991b. The breeding and dispersal systems of lianas. Pp. 393423 in Putz, F. E. & Mooney, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
GIANOLI, E. 2004. Evolution of a climbing habit promotes diversification in flowering plants. Proceedings of the Royal Society of London B 271:20112015.CrossRefGoogle ScholarPubMed
HAMRICK, J. L. & GODT, M. J. W. 1990. Allozyme diversity in plant species. Pp. 4363 in Brown, A. H. D., Clegg, M. T., Kahler, A. L. & Weir, B. S. (eds.). Plant population genetics, breeding, and genetic resources. Sinauer, Sunderland.Google Scholar
HAMRICK, J. L. & GODT, M. J. W. 1996. Conservation genetics of endemic plant species. Pp. 281304 in Avise, J. C. & Hamrick, J. L. (eds.). Conservation genetics: case histories from nature. Chapman & Hall, New York.CrossRefGoogle Scholar
HAMRICK, J. L. & NASON, J. D. 1996. Consequences of dispersal in plants. Pp. 203236 in Rhodes, O. E., Chesser, R. K. & Smith, M. H. (eds.). Population dynamics in ecological space and time. University of Chicago Press, Chicago.Google Scholar
HAMRICK, J. L., GODT, M. J. W. & SHERMAN-BROYLES, S. L. 1992. Factors affecting levels of genetic diversity in woody plant species. New Forests 6:95124.CrossRefGoogle Scholar
HESLOP-HARRISON, Y. & SHIVANNA, K. R. 1977. The receptive surface of the angiosperm stigma. Annals of Botany 41:12331258.CrossRefGoogle Scholar
HOKCHE, O. & RAMIREZ, N. 1990. Pollination ecology of seven species of Bauhinia L. (Leguminosae: Caesalpinioideae). Annals of the Missouri Botanical Garden 77:559572.CrossRefGoogle Scholar
KATO, M. 2000. Anthophilous insect community and plant-pollinator interactions on Amami Islands in the Ryukyu Archipelago, Japan. Contributions from the Biology Laboratory, Kyoto University 29:157252.Google Scholar
KING, J. R. 1960. The peroxidase reaction as an indicator of pollen viability. Stain Technology 35:225227.Google ScholarPubMed
LAU, C. P. Y., RAMSDEN, L. & SAUNDERS, R. M. K. 2005. Hybrid origin of “Bauhinia blakeana” (Leguminosae: Caesalpinioideae), inferred using morphological, reproductive, and molecular data. American Journal of Botany 92:525533.CrossRefGoogle ScholarPubMed
LEWONTIN, R. C. 1972. Apportionment of human diversity. Evolutionary Biology 6:381398.Google Scholar
NEI, M. 1972. Genetic distance between populations. American Naturalist 106:283292.CrossRefGoogle Scholar
NEI, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, USA 70:33213323.CrossRefGoogle ScholarPubMed
NEI, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583590.CrossRefGoogle ScholarPubMed
PHILLIPS, O. L., VÁSQUEZ MARTÍNEZ, R., ARROYO, L., BAKER, T. R., KILLEEN, T., LEWIS, S. L., MALHI, Y., MENDOZA, A. M., NEILL, D., VARGAS, P. N., ALEXIADES, M., CERN, C., DI FIORE, A., ERWIN, T., JARDIM, A., PALACIOS, W., SALDIAS, M. & VINCETI, B. 2002. Increasing dominance of large lianas in Amazonian forests. Nature 418:770774.CrossRefGoogle ScholarPubMed
PUTZ, F. E. 1984. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:17131724.CrossRefGoogle Scholar
REDDI, C. S. & RAO, C. B. 1993. Pollination ecology of Bauhinia purpurea (Caesalpinioideae). Journal of Palynology 29:115124.Google Scholar
SCHNITZER, S. A. & BONGERS, F. 2002. The ecology of lianas and their role in the forests. Trends in Ecology and Evolution 17:223230.CrossRefGoogle Scholar
SCHNITZER, S. A., DEWALT, S. J. & CHAVE, J. 2006. Censusing and measuring lianas: quantitative comparison of the common methods. Biotropica 38:581591.CrossRefGoogle Scholar
SLATKIN, M. 1987. Gene flow and the geographic structure of natural populations. Science 236:787791.CrossRefGoogle ScholarPubMed
STILES, F. G. & FREEMAN, C. E. 1993. Patterns in floral nectar characteristics of some bird-visited plant species from Costa Rica. Biotropica 25:191205.CrossRefGoogle Scholar
SUN, M. & WONG, K. C. 2001. Genetic structure of three orchid species with contrasting breeding systems using RAPD and allozyme markers. American Journal of Botany 88:21802188.CrossRefGoogle ScholarPubMed
VOGEL, S. 1954. Blütenbiologische Typen als Elemente der Sippengliederung. Botanische Studien 1:1338.Google Scholar