Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-05-05T18:35:56.473Z Has data issue: false hasContentIssue false

Environmental factors influencing invertebrate communities in caves and surrounding habitats in the Neotropics

Published online by Cambridge University Press:  28 April 2025

Gabrielle Soares Muniz Pacheco
Affiliation:
Programa de pós-graduação em Ecologia Aplicada – Universidade Federal de Lavras, Lavras, Brazil Vale S.A., Espeleologia e Tecnologia de Ferrosos, rua Guamá, 60, Parauapebas, Pará, Brazil
Marconi Souza-Silva
Affiliation:
Programa de pós-graduação em Ecologia Aplicada – Universidade Federal de Lavras, Lavras, Brazil Centro de Estudos em Biologia Subterrânea (CEBS), Departamento de Ecologia e Conservação, Universidade Federal de Lavras, Instituto de Ciências Naturais, Campus Universitário, CEP 37200-900, Lavras, Minas Gerais, Brazil
Rodrigo Lopes Ferreira*
Affiliation:
Programa de pós-graduação em Ecologia Aplicada – Universidade Federal de Lavras, Lavras, Brazil Centro de Estudos em Biologia Subterrânea (CEBS), Departamento de Ecologia e Conservação, Universidade Federal de Lavras, Instituto de Ciências Naturais, Campus Universitário, CEP 37200-900, Lavras, Minas Gerais, Brazil
*
Corresponding author: Rodrigo Lopes Ferreira; Email: [email protected]

Abstract

The connectivity between epigean and cave habitats is crucial for maintaining invertebrate communities once it can facilitate faunal movement, organic resource supply, and environmental stability. The study aimed to investigate how some spatial and temporal variations in environmental factors within caves and epigean habitats influence invertebrate species richness and composition. We found a notable difference in invertebrate species richness and composition between cave and epigean environments and between cave lithologies. Moisture and temperature significantly influenced species composition across lithologies and epigean and hypogean environments. Cave microclimatic emerged as a critical factor influencing cave fauna. The dissimilarities between epigean and cave environments underscore the selective pressures imposed by caves, challenging species to overcome such environmental filters. Despite epigean environments offering more significant variability in conditions and resources, the findings highlight the importance of local ecological context and specific situations in shaping invertebrate communities. Furthermore, spatial variability within caves emphasises the necessity for a nuanced approach to conservation, considering the heterogeneity of habitats within each cave system. The study contributes to understanding the relationship between caves and their surrounding areas, emphasising the need for tailored conservation strategies that account for regional and cave-specific factors in the context of global environmental changes.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andersen, CM, Bro, R (2010) Variable selection in regression - a tutorial. Journal of chemometrics 24(11-12), 728737.CrossRefGoogle Scholar
Auler, A, Farrant, A (1996) A brief introduction to karst and caves in Brazil. Proceedings of the University of Bristol Spelaeological Society 20(3), 187200.Google Scholar
Badino, G (2004) Cave temperatures and global climatic change. International Journal of Speleology 33(1), 10.CrossRefGoogle Scholar
Badino, G (2010) Underground meteorology - “What’s the weather underground?”. Acta carsologica 39(3), 427448. CrossRefGoogle Scholar
Baker, A, Genty, D (1998) Environmental pressures on conserving cave speleothems: effects of changing surface land use and increased cave tourism. Journal of Environmental Management 53(2), 165175.CrossRefGoogle Scholar
Bento, DDM, Ferreira, RL, Prous, X, Souza-Silva, M, Bellini, BC, Vasconcellos, A (2016) Seasonal variations in cave invertebrate communities in the semiarid Caatinga, Brazil. Journal of Cave and Karst Studies 78(2), 6171.CrossRefGoogle Scholar
BRASIL (2000) Ministério do Meio Ambiente. SNUC – Sistema Nacional de Unidades de Conservação da Natureza: Lei nº 9.985, de 18 de julho de 2000.Google Scholar
Cardoso, P (2012) Diversity and community assembly patterns of epigean vs. troglobiont spiders in the Iberian Peninsula. International Journal of Speleology 41(1), 8394.CrossRefGoogle Scholar
Cardoso, RC, Ferreira, RL, Souza-Silva, M (2022) Multi-spatial analysis on cave ecosystems to predict the diversity of subterranean invertebrates. Basic and Applied Ecology 65, 111122 CrossRefGoogle Scholar
Chapman, P (1982) The origin of troglobites. Proceedings of the University of Bristol Spelaeological Society 16(2), 133141.Google Scholar
Christman, MC, Culver, DC (2001) The relationship between cave biodiversity and available habitat. Journal of Biogeography 28(3), 367380.CrossRefGoogle Scholar
CBHSF (2023) Comitê da Bacia Hidrográfica do rio São Francisco 2023. A Bacia. Available at https://cbhsaofrancisco.org.br/a-bacia/ (accessed 9 August 2023).Google Scholar
CPRM/RIGEO (2014) Repositório Institucional de Geociências. Mapas geológico e de recursos minerais do estado de Minas Gerais. Available at https://rigeo.cprm.gov.br/jspui/handle/doc/20786/ (accessed 8 August 2023).Google Scholar
Derraik, JG, Closs, GP, Dickinson, KJ, Sirvid, P, Barratt, BI, Patrick, BH (2002) Arthropod morphospecies versus taxonomic species: a case study with Araneae, Coleoptera, and Lepidoptera. Conservation Biology 16(4), 10151023.CrossRefGoogle Scholar
Ferreira, RL, Oliveira, MPA, Souza-Silva, M (2015) Biodiversidade subterrânea em geossistemas ferruginosos. In: Geossistemas Ferruginosos Do Brasil: Áreas Prioritárias Para Conservação da Diversiadde Geológica E Biológica, Patrimônio Cultural E Serviços Ambientais. Instituto Prístino, Belo Horizonte, MG, pp. 195231.Google Scholar
Ficetola, GF, Lunghi, E, Manenti, R (2020) Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 43(5), 724734.CrossRefGoogle Scholar
Frith, D, Frith, C (1990) Seasonality of litter invertebrate populations in an Australian upland tropical rain forest. Biotropica 22, 181190.CrossRefGoogle Scholar
Gibert, J, Deharveng, L (2002) Subterranean ecosystems: a truncated functional biodiversity. BioScience 52(6), 473481.CrossRefGoogle Scholar
Gillieson, D (1996) Caves: Processes, Development and Management, Library of Congress Cataloging-in Publication Data. Blackwell Publishers, Oxford.CrossRefGoogle Scholar
Hoffmann, PP (2012) Caracterização de fragmentos de floresta estacional decidual do Parque Estadual da Lapa Grande, Montes Claros, MG. Dissertação apresentada ao Curso de Mestrado em Ciências Agrárias, área de concentração em Agroecologia, do Instituto de Ciências Agrárias da Universidade Federal de Minas Gerais, como requisito parcial para a obtenção do grau de Mestre em Ciências Agrárias. 78 pages.Google Scholar
Howarth, FG (1993) High-stress subterranean habitats and evolutionary change in cave-inhabiting arthropods. The American Naturalist 142, S65S77.CrossRefGoogle ScholarPubMed
IDE-SISEMA (2023) A Infraestrutura de Dados Espaciais do Sistema Estadual de Meio Ambiente e Recursos Hídricos. Plataforma WebGIS. Available at https://idesisema.meioambiente.mg.gov.br/webgis (accessed 10 August 2023).Google Scholar
IEF (2007) Instituto Estadual de Florestas Encarte 1 - Diagnóstico do Parque: caracterização e análise ambiental da Unidade de Conservação. In:Herrmann, G (Coord.). Plano de Manejo do Parque Estadual do Ibitipoca, Belo Horizonte, 111p.Google Scholar
IEF (2014) Instituto Estadual de Florestas Encarte 1 – Diagnóstico: Espeleologia. In: Miranda-Melo, A. A. (Coord.). Plano de Manejo do Parque Estadual da Lapa Grande, Montes Claros, 81p.Google Scholar
Jaffé, R, Prous, X, Calux, A, Gastauer, M, Nicacio, G, Zampaulo, R, Siqueira, JO (2018) Conserving relicts from ancient underground worlds: assessing the influence of cave and landscape features on obligate iron cave dwellers from the Eastern Amazon. PeerJ 6, e4531.CrossRefGoogle Scholar
Johnson, JB, Omland, KS (2004) Model selection in ecology and evolution. Trends in Ecology & Evolution 19(2), 101108.CrossRefGoogle ScholarPubMed
Kai, KH, Corlett, RT (2002) Seasonality of forest invertebrates in Hong Kong, south China. Journal of tropical Ecology 18(4), 637644.CrossRefGoogle Scholar
Kitching, RL, Dahlsjö, CAL, Eggleton, P (2020) Invertebrates and the complexity of tropical ecosystems. Biotropica 52, 207214. https://doi.org/10.1111/btp.12768 CrossRefGoogle Scholar
Kolasa, J, Pickett, ST (Eds.) (1991) Ecological Heterogeneity. Springer-Verlag.CrossRefGoogle Scholar
Kunz, TH, Torrez, EB, Bauer, D, Lobova, T, Fleming, TH (2011) Ecosystem services provided by bats. Annals of the NewYork Academy of Sciences 1223(1), 138.CrossRefGoogle ScholarPubMed
Legendre, P, Anderson, MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69(1), 124.CrossRefGoogle Scholar
Lunghi, E, Manenti, R, Ficetola, GF (2017) Cave features, seasonality and subterranean distribution of non-obligate cave dwellers. PeerJ 5, e3169.CrossRefGoogle ScholarPubMed
Magurran, AE (2013) Ecological diversity and its measurement. Springer Science & Business Media.Google Scholar
Mammola, S (2019) Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography 42(7), 13311351.CrossRefGoogle Scholar
Mammola, S, Paschetta, M, Isaia, M (2014) Potential of cave ecosystems as indicators for global warming. In XXVIII European Congress of Arachnology-Abstract Book (pp. 94-94). Università di Torino & Museo Regionale di Scienze Naturali.Google Scholar
Mammola, S, Piano, E, Giachino, PM, Isaia, M (2017) An ecological survey of the invertebrate community at the epigean/hypogean interface. Subterranean Biology 24, 2752.CrossRefGoogle Scholar
Mejía-Ortíz, L, Christman, MC, Pipan, T, Culver, DC (2020) What’s the temperature in tropical caves?. PLoS One 15(12), e0237051.CrossRefGoogle ScholarPubMed
Mejía-Ortíz, L, Christman, MC, Pipan, T, Culver, DC (2021) What’s the relative humidity in tropical caves?. Plos one 16(9), e0250396.CrossRefGoogle ScholarPubMed
Mendes-Rabelo, L, Souza-Silva, M, Ferreira, RL (2020) Epigean and hypogean drivers of Neotropical subterranean communities. Journal of Biogeography 48(3), 662675.CrossRefGoogle Scholar
Moseley, M (2009) Size matters: scalar phenomena and a proposal for an ecological definition of ‘cave’. Cave and Karst Science 35(3), 8994.Google Scholar
Oliveira, MP, Ferreira, RL (2024) Extending beyond individual caves: a graph theory approach broadening conservation priorities in Amazon iron ore caves. PeerJ 12, e16877.CrossRefGoogle ScholarPubMed
Oliver, I, Beattie, AJ (1996) Invertebrate morphospecies as surrogates for species: a case study. Conservation Biology 10(1), 99109.CrossRefGoogle Scholar
Pacheco, GSM, Souza-Silva, M, Cano, E, Ferreira, RL (2020) The role of microhabitats in structuring cave invertebrate communities in Guatemala. International Journal of Speleology 49(2), 8.CrossRefGoogle Scholar
Peet, RK (1974) The measurement of species diversity. Annual Review of Ecology and Systematics 5(1), 285307.CrossRefGoogle Scholar
Pellegrini, T, Sales, LP, Aguiar, P, Ferreira, RL (2016) Linking spatial scale dependence of land-use descriptors and invertebrate cave community composition. Subterranean Biology 18, 1738.CrossRefGoogle Scholar
Poulson, TL, White, WB (1969) The cave environment: limestone caves provide unique natural laboratories for studying biological and geological processes. Science 165(3897), 971981.CrossRefGoogle Scholar
Prous, X, Ferreira, RL, Jacobi, CM (2015) The entrance as a complex ecotone in a Neotropical cave. International Journal of Speleology 44(2), 177189.CrossRefGoogle Scholar
Prous, X, Ferreira, RL, Martin, RP (2004) Ecotone delimitation: Epigean–hypogean transition in cave ecosystems. Austral Ecology 29(4), 374382.CrossRefGoogle Scholar
Racovitza, EG (1907) Essai sur les problèmes biospéologiques. Biospeologica, I; Archiv. Zool. exper. gêner. (4), VI.Google Scholar
R CORE TEAM (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/ (accessed 10 August 2023).Google Scholar
Reis-Venâncio, PC, Rabelo, LM, Pellegrini, TG, Ferreira, RL (2022) From light to darkness: the duality of influence of habitat heterogeneity on Neotropical terrestrial cave invertebrate communities. Studies on Neotropical Fauna and Environment 59(2), 255264.CrossRefGoogle Scholar
Ricotta, C, Podani, J (2017) On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecological Complexity 31, 201205.CrossRefGoogle Scholar
Romero, A (Ed.) (2009) The evolutionary biology of cave organisms. In Cave Biology Life in Darkness (1st ed.,). Cambridge University Press. pp. 130158.CrossRefGoogle Scholar
Schiner, JR (1854) Fauna der Adelsberger, Lueger und Magdalener-Grotte. In A. SCHMIDL, Die Grotten und Höhlen von Adelsberg, Lueg, Planina undLoos. Wien, Braunmüller. Pages 232272.Google Scholar
Schneider, CA, Rasband, WS, Eliceiri, KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7), 671675.CrossRefGoogle ScholarPubMed
Schneider, K, Christman, MC, Fagan, WF (2011) The influence of resource subsidies on cave invertebrates: results from an ecosystem-level manipulation experiment. Ecology 92(3), 765776.CrossRefGoogle ScholarPubMed
Silva, NAPD, Frizzas, MR, Oliveira, CMD (2011) Seasonality in insect abundance in the” Cerrado” of Goiás State, Brazil. Revista Brasileira de Entomologia 55, 7987.CrossRefGoogle Scholar
Simões, MH, Souza-Silva, M, Ferreira, RL (2015) Cave physical attributes influencing the structure of terrestrial invertebrate communities in Neotropics. Subterranean Biology 16, 103121.Google Scholar
Simon, KS, Pipan, T, Culver, DC (2007) A conceptual model of the flow and distribution of organic carbon in caves. Journal of Cave and Karst Studies 69(2), 279284.Google Scholar
Sket, B (1999) The nature of biodiversity in hypogean waters and how it is endangered. Biodiversity and Conservation 8(10), 13191338.CrossRefGoogle Scholar
Sket, B (2008) Can we agree on an ecological classification of subterranean animals? Journal of Natural History 42(21-22), 15491563.CrossRefGoogle Scholar
Smrž, J, Kováč, Ľ, Mikeš, J, Šustr, V, Lukešová, A, Tajovsky, K, Nováková, A, Režňáková, P (2015) Food sources of selected terrestrial cave arthropods. Subterranean Biology 16, 3746.CrossRefGoogle Scholar
Somerfield, PJ, Clarke, KR, Gorley, RN (2021) A generalized analysis of similarities (ANOSIM) statistics for designs with ordered factors. Austral Ecology 46(6), 901910.CrossRefGoogle Scholar
Souza-Silva, M, Cerqueira, RFV, Pellegrini, TG, Ferreira, RL (2021) Habitat selection of cave-restricted fauna in a new hotspot of subterranean biodiversity in Neotropics. Biodiversity and Conservation 30(14), 42234250.CrossRefGoogle Scholar
Souza-Silva, M, Ferreira, RL, Bernardi, LFO, Martins, RP (2007) Importação e processamento de detritos orgânicos em uma caverna calcária. Espeleo-Tema 19, 3141.Google Scholar
Souza-Silva, M, Martins, RP, Ferreira, RL (2011) Cave lithology determining the structure of the invertebrate communities in the Brazilian Atlantic Rain Forest. Biodiversity and Conservation 20(8), 17131729.CrossRefGoogle Scholar
Souza-Silva, M, Martins, RP, Ferreira, RL (2011a) Trophic dynamics in a neotropical limestone cave. Subterranean Biology 9, 127138.Google Scholar
Souza-Silva, M, Bernardi, LFO, Martins, RP, Ferreira, RL (2012) Transport and consumption of organic detritus in a neotropical limestone cave. Acta Carsologica 41(1), 139150. https://doi.org/10.3986/ac.v41i1.54 Google Scholar
Souza-Silva, M, Iniesta, LFM, Ferreira, RL (2020) Cave lithology effect on subterranean biodiversity: a case study in quartzite and granitoid caves. Acta Oecologica 108, 103645.CrossRefGoogle Scholar
Tobin, BW, Hutchins, BT, Schwartz, BF (2013) Spatial and temporal changes in invertebrate assemblage structure from the entrance to deep-cave zone of a temperate marble cave. International Journal of Speleology 42(3), 4.CrossRefGoogle Scholar
Tonkin, JD, Bogan, MT, Bonada, N, Rios-Touma, B, Lytle, DA (2017) Seasonality and predictability shape temporal species diversity. Ecology 98(5), 12011216.CrossRefGoogle ScholarPubMed
Venarsky, MP, Huntsman, BM (2018) Food Webs in Caves. In: Moldovan, O., Kováč, Ľ., Halse, S (eds) Cave Ecology. Ecological Studies, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-98852-8_14 Google Scholar
Willems, L, Rodet, J, Pouclet, A, Melo, S, Rodet, MJ, Compère, P, Auler, AS (2008) Karsts in sandstones and quartzites of Minas Gerais, Brazil. Cadernos do Laboratorio Xeolóxico de Laxe, 33.Google Scholar
Wynne, JJ, Howarth, FG, Sommer, S, Dickson, BG (2019) Fifty years of cave arthropod sampling: techniques and best practices. International Journal of Speleology 48(1), 3348. Tampa, FL (USA) ISSN 0392-6672.CrossRefGoogle Scholar