Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T23:11:58.898Z Has data issue: false hasContentIssue false

Effects of puma on the diversity and composition of Neotropical mammals

Published online by Cambridge University Press:  09 October 2017

Crasso Paulo B. Breviglieri*
Affiliation:
Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo 13083–970, Brazil
John W. Laundré
Affiliation:
Department of Biology, Western Oregon University, Monmouth, Oregon 97361, USA
Gustavo Q. Romero
Affiliation:
Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo 13083–970, Brazil
*
*Corresponding author. E-mail: [email protected]

Abstract:

Prey seek to minimize predation risk by moving across the landscape in search of safer areas. Yet, these movements are associated with risks that depend on the intrinsic attributes of the species involved. We evaluated the effect of presence of an apex predator (Puma concolor) on the composition of a community of medium and large-bodied terrestrial mammal species in 23 forest fragments in the State of São Paulo, Brazil, based on overnight footprint surveys over 2 y. We tested if (1) presence of the puma decreases species richness (prey and mesopredator), (2) landscape features interact with puma effects, altering the composition and richness of prey, (3) darker nights strengthen the predation risk effects of puma and (4) this effect can vary among prey species. The puma reduced the richness of prey species by ~45% and presence of mesopredator by 11%. Larger forest fragments and darker nights strengthened the effects of puma on the mammal community. Most prey species showed negative associations with the apex predator, while others were unaffected or showed a positive association. These results add new knowledge about the effects of predation risk and of the landscape characteristics on the composition of the mammal community and the behaviour of different species. Furthermore, our results indicate that medium and large mammals live in a landscape of fear in Neotropical forest remnants.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALLEN, M. L., ELBROCH, L. M., WILMERS, C. C. & WITTMER, H. U. 2014. Trophic facilitation or limitation? Comparative effects of pumas and black bears on the scavenger community. PLoS ONE 9:e102257.CrossRefGoogle ScholarPubMed
ALLEN, M. L., ELBROCH, L. M., WILMERS, C. C. & WITTMER, H. U. 2015. The comparative effects of large carnivores on the acquisition of carrion by scavengers. American Naturalist 185:822833.CrossRefGoogle ScholarPubMed
ANDERSON, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:3246.Google Scholar
BACON, M. M. & BOYCE, M. S. 2010. Scavenging of an elk, Cervus elaphus, carcass by multiple cougars, Puma concolor, in southeastern Alberta. The Canadian Field-Naturalist 124:242245.CrossRefGoogle Scholar
BECKER, M. & DALPONTE, J. 1991. Rastros de Mamíferos silvestres brasileiros: um guia de campo. Editora Universidade de Brasília, Brasília. 166 pp.Google Scholar
BORGES, P. A. L. & TOMÁS, W. M. 2004. Guia de rastros e outros vestígios de mamíferos do pantanal. Embrapa Pantanal, Corumbá. 148 pp.Google Scholar
BREVIGLIERI, C. P. B., PICCOLI, G. C., UIEDA, W. & ROMERO, G. Q. 2013. Predation-risk effects of predator identity on the foraging behaviors of frugivorous bats. Oecologia 173:905912.CrossRefGoogle ScholarPubMed
BROWN, J. S., LAUNDRÉ, J. W. & GURUNG, M. 1999. The ecology of fear: optimal foraging, game theory, and trophic interactions. Journal of Mammalogy 80:385399.CrossRefGoogle Scholar
BURNHAM, K. P. & ANDERSON, D. R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. (Second edition). Springer-Verlag, New York. 488 pp.Google Scholar
CAVALCANTI, S. M. C. & GESE, E. M. 2010. Kill rates and predation patterns of jaguars (Panthera onca) in the southern Pantanal, Brazil. Journal of Mammalogy 91:722736.CrossRefGoogle Scholar
CHEIDA, C. C., NAKANO-OLIVEIRA, E., FUSCO-COSTA, R., ROCHA-MENDES, F. & QUADROS, J. 2006. Ordem Carnivora; Mamíferos do Brasil. Editora da Universidade Estadual de Londrina, Londrina. 560 pp.Google Scholar
CHIARELLO, A. G. 1999. Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil. Biological Conservation 89:7182.CrossRefGoogle Scholar
CLARK, D. A., DAVIDSON, G. A., JOHNSON, B. K. & ANTHONY, R. G. 2014. Cougar kill rates and prey selection in a multiple-prey system in northeast Oregon. Journal of Wildlife Management 78:11611176.CrossRefGoogle Scholar
CRAMÉR, H. 1999. Mathematical methods of statistics. Princeton University Press, Princeton. 575 pp.Google Scholar
CROOKS, K. R. & SOULÉ, M. E. 1999. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400:563566.CrossRefGoogle Scholar
DESBIEZ, A. L. J. & KLUYBER, D. 2013. The role of giant armadillos (Priodontes maximus) as physical ecosystem engineers. Biotropica 45:537540.CrossRefGoogle Scholar
EISENBERG, J. F. & REDFORD, K. H. 1999. Mammals of the Neotropics: the Central Neotropics: Ecuador, Peru, Bolivia, Brazil. University of Chicago Press, Chicago, IL, 624 pp.Google Scholar
EMMONS, L. H. & FEER, F. 1997. Neotropical rainforest mammals: a field guide. University of Chicago Press, Chicago, IL, 396 pp.Google Scholar
HARMSEN, B. J., FOSTER, R. J., SILVER, S. C., OSTRO, L. E. T. & DONCASTER, C. P. 2010. Jaguar and puma activity patterns in relation to their main prey. Mammalian Biology 76: 320324.CrossRefGoogle Scholar
JOHANNESEN, E., AARS, J., ANDREASSEN, H. P. & IMS, R. A. 2003. A demographic analysis of vole population responses to fragmentation and destruction of habitat. Population Ecology 45:4758.CrossRefGoogle Scholar
LAUNDRÉ, J. W. & HERNÁNDEZ, L. 2003. Winter hunting habitat of pumas Puma concolor in northwestern Utah and southern Idaho, USA. Wildlife Biology 9:123129.CrossRefGoogle Scholar
LAUNDRÉ, J. W. & LOXTERMAN, J. 2007. Impact of edge habitat on summer home range size in female pumas. The American Midland Naturalist 157:221229.CrossRefGoogle Scholar
LAUNDRÉ, J. W., HERNÁNDEZ, L. & RIPPLE, W. J. 2010. The landscape of fear: ecological implications of being afraid. Open Ecology Journal 3:17.CrossRefGoogle Scholar
LEFCHECK, J. S. 2015. PiecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution 7:573579.CrossRefGoogle Scholar
LIMA, S. L. 1998. Nonlethal effects in the ecology of predator-prey interactions. Bioscience 48:2534.CrossRefGoogle Scholar
LIMA, S. L. & DILL, L. M. 1990. Behavioral decisions made under the risk of predation – a review and prospectus. Canadian Journal of Zoology – Revue Canadienne de Zoologie 68:619640.CrossRefGoogle Scholar
MILLER, C. S., HEBBLEWHITE, M., PETRUNENKO, Y. K., SERYODKIN, I. V., DECESARE, N. J., GOODRICH, J. M., DALE, G. & MIQUELLE, D. G. 2013. Estimating Amur tiger (Panthera tigris altaica) kill rates and potential consumption rates using global positioning system collars. Journal of Mammalogy 94:845855.CrossRefGoogle Scholar
PADILLA, M. & DOWLER, R. C. 1994. Tapirus terrestris. Mammalian Species 481:18.Google Scholar
PEDÓ, E., TOMAZZONI, A. C., HARTZ, S. M. & CHRISTOFF, A. U. 2006. Diet of crab-eating fox, Cerdocyon thous (Linnaeus) (Carnivora, Canidae), in a suburban area of southern Brazil. Revista Brasileira de Zoologia 23:637641.CrossRefGoogle Scholar
REIS, N. R., PERACCHI, A. L., PEDRO, W. P. & LIMA, I. P. 2011. Mamíferos do Brasil. Universidade de Londrina, Londrina, 437 pp.Google Scholar
RIPPLE, W. J. & BESCHTA, R. L. 2004. Wolves and the ecology of fear: can predation risk structure ecosystems? BioScience 54:755766.CrossRefGoogle Scholar
RIPPLE, W. J. & BESCHTA, R. L. 2006. Linking a cougar decline, trophic cascade, and catastrophic regime shift in Zion National Park. Biological Conservation 133:397408.CrossRefGoogle Scholar
RIPPLE, W. J., ESTES, J. A., BESCHTA, R. L., WILMERS, C. C., RITCHIE, E. G., HEBBLEWHITE, M., BERGER, J., ELMHAGEN, B., LETNIC, M., NELSON, M. P., SCHMITZ, O. J., SMITH, D. W., WALLACH, A. D. & WIRSING, A. J. 2014. Status and ecological effects of the world's largest carnivores. Science 343:151163.CrossRefGoogle ScholarPubMed
RODE-MARGONO, E. J. & NEKARIS, K. A. I. 2014. Impact of climate and moonlight on a venomous mammal, the Javan slow loris (Nycticebus javanicus Geoffroy, 1812). Contribution to Zoology 83:217225.CrossRefGoogle Scholar
ROLIM, G. S., CAMARGO, M. B. P., LANIA, D. G. & MORAES, J. F. 2007. Classificação climática de Köppen e de Thornthwaite e sua aplicabilidade na determinação de zonas agroclimáticas para o Estado de São Paulo. Bragantia 66:711720.CrossRefGoogle Scholar
ROMERO, G. Q., ANTIQUEIRA, P. A. P. & KORICHEVA, J. 2011. A meta-analysis of predation risk effects on pollinator behaviour. PLoS ONE 6:e20689.CrossRefGoogle ScholarPubMed
SCHMIDT, K. & KUIJPER, D. P. J. 2015. A “death trap” in the landscape of fear. Mammal Research 60: 275284.CrossRefGoogle Scholar
SCHMITZ, O. J. 2010. Resolving ecosystem complexity. Princeton University Press, New Jersey. 192 pp.CrossRefGoogle Scholar
SHIPLEY, B. 2000. A new inferential test for path models based on directed acyclic graphs. Structural Equation Modeling 7:206218.CrossRefGoogle Scholar
SHIPLEY, B. 2009. Confirmatory path analysis in a generalized multilevel context. Ecology 90:363368.CrossRefGoogle Scholar
SILVA-PEREIRA, J. E., MORO-RIOS, R. F., BILSKI, D. R. & PASSOS, F. P. 2011. Diets of three sympatric Neotropical small cats: food niche overlap and interspecies differences in prey consumption. Mammalian Biology 76:308312.CrossRefGoogle Scholar
SINCLAIR, A. R. E., MDUMA, S. & BRASHARES, J. S. 2003. Patterns of predation in a diverse predator-prey system. Nature 425:288290.CrossRefGoogle Scholar
SUNQUIST, M. E. & SUNQUIST, F. C. 1989. Ecological constraints on predation by large felids. Pp. 283301 in Gittleman, J. L. (ed.). Carnivore behaviour, ecology and evolution. Cornell University Press, Ithaca, New York.CrossRefGoogle Scholar
VALEIX, M., LOVERIDGE, A. J., CHAMAILLÉ–JAMMES, S., DAVIDSON, Z., MURINDAGOMO, F., FRITZ, H. & MACDONALD, A. D. W. 2009. Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use. Ecology 90:2330.CrossRefGoogle ScholarPubMed
VIVO, M., CARMIGNOTTO, A. P., GREGORIN, R., HINGST-ZAHER, E., IACKXIMENES, G. E., MIRETZKI, M., PERCEQUILLO, A. P., JUNIOR, M. M. R., ROSSI, R. V. & TADDEI, V. A. 2011. Checklist dos mamíferos do Estado de São Paulo, Brasil. Biota Neotropical 11:121.Google Scholar
WILSON, D. E. & REEDER, D. M. 2005. Mammal species of the world: a taxonomic and geographic reference. (Third edition). Johns Hopkins University Press, Baltimore, 2142 pp.CrossRefGoogle Scholar
WIRSING, A. J. & RIPPLE, J. R. 2011. A comparison of shark and wolf research reveals similar behavioral responses by prey. Frontiers in Ecology and the Environment 9:335341.CrossRefGoogle Scholar
ZUUR, A. F., IENO, E. N., WALKER, N. J., SAVELIEV, A. A. & SMITH, G. M. 2009. Mixed effects models and extensions in ecology with R. Springer, New York, 573 pp.CrossRefGoogle Scholar