Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T14:38:40.841Z Has data issue: false hasContentIssue false

Effects of fire on above-ground forest biomass in the northern Brazilian Amazon

Published online by Cambridge University Press:  22 November 2012

Flora da Silva Ramos Vieira Martins*
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), Divisão de Sensoriamento Remoto (DSR), Av. dos Astronautas 1758, CEP: 12227-010, São José dos Campos (SP), Brazil
Haron Abrahim Magalhães Xaud
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), Divisão de Sensoriamento Remoto (DSR), Av. dos Astronautas 1758, CEP: 12227-010, São José dos Campos (SP), Brazil Empresa Brasileira de Pesquisa Agropecuária – Embrapa Roraima, BR-174, km 8, Distrito Industrial, CEP 69.301-970 – Boa Vista RR, Brazil
João Roberto dos Santos
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), Divisão de Sensoriamento Remoto (DSR), Av. dos Astronautas 1758, CEP: 12227-010, São José dos Campos (SP), Brazil
Lênio Soares Galvão
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), Divisão de Sensoriamento Remoto (DSR), Av. dos Astronautas 1758, CEP: 12227-010, São José dos Campos (SP), Brazil
*
1Corresponding author. Email: [email protected]

Abstract:

Fires can significantly affect the structure, floristic composition and biomass content of tropical forests, which are not adapted to this disturbance. To assess the impact of understorey fires on above-ground biomass, this study was conducted in the northern Brazilian Amazon (Roraima state), where uncontrolled forest fires are recurrent. Fifty plots (0.25 ha each) distributed across five fire disturbance classes were inventoried. Losses in biomass stocks were significant (−57% and −63%) for forests that suffered from recurrent fires and progressively occurred until some point between 3 and 7 y after the last fire, as deduced from previous studies. Twelve years after a fire event, biomass stocks were reconstituted, although differences in the floristic composition were associated with greater fire severity, particularly driven by the dominance of the Cecropia spp. In thrice-burned forests, live biomass reached levels of secondary forests of the same region. For large trees (> 50 cm dbh), the reduction (−54%) in biomass was significant in thrice-burned areas. These findings highlight the threat that fires represent for tropical rain forests and emphasise the need for long-term surveys in order to distinguish between the effects of fire severity, fire frequency and time-since-fire artefact.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALARCÓN, J. G. S. & PEIXOTO, A. L. 2007. Floristic composition and structure in one hectare of terra firme forest, Caracaraí, state of Roraima, Brazil. Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais 2:3360.CrossRefGoogle Scholar
ALENCAR, A., NEPSTAD, D. & DIAZ, M. C. V. 2006. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interactions 10:117.CrossRefGoogle Scholar
ALENCAR, A., ASNER, G. P., KNAPP, D. & ZARIN, D. 2011. Temporal variability of forest fires in eastern Amazonia. Ecological Applications 21:23972412.CrossRefGoogle ScholarPubMed
ARAGÃO, L. E. O. C., MALHI, Y., ROMAN-CUESTA, R. M., SAATCHI, S., ANDERSON, L. O. & SHIMABUKURO, Y. E. 2007. Spatial patterns and fire response of recent Amazonian droughts. Geophysical Research Letters 34:L07701.CrossRefGoogle Scholar
ARAÚJO, L. S. 1999. Análise da cobertura vegetal e de biomassa em áreas de contato floresta/savana a partir de dados TM/LANDSAT e JERS-1. Instituto Nacional de Pesquisas Espaciais, São José dos Campos. 115 pp.Google Scholar
BAKER, T. R., PHILLIPS, O. L., MALHI, Y., ALMEIDA, S., ARROYO, L., DI FIORE, A., ERWIN, T., KILLEEN, T. J., LAURANCE, S. G., LAURANCE, W. F., LEWIS, S. L., LLOYD, J., MONTEAGUDO, A., NEILL, D. A., PATIÑO, S., PITMAN, N. C. A., SILVA, J. N. M. & MARTINEZ, R. V. 2004. Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10:545562.CrossRefGoogle Scholar
BALCH, J. K., NEPSTAD, D. C., BRANDO, P. M., CURRAN, L. M., PORTELA, O., DE CARVALHO, O. & LEFEBVRE, P. 2008. Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology 14:22762287.CrossRefGoogle Scholar
BALCH, J. K., NEPSTAD, D. C., CURRAN, L. M., BRANDO, P. M., PORTELA, O., GUILHERME, P., REUNING-SCHERER, J. D. & CARVALHO, O. 2011. Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management 261:6877.CrossRefGoogle Scholar
BARBOSA, R. I. & FEARNSIDE, P. M. 1996. Carbon and nutrient flows in an Amazonian forest: fine litter production and composition at Apiaú, Roraima, Brazil. Tropical Ecology 37:115125.Google Scholar
BARBOSA, R. I. & FEARNSIDE, P. M. 1999. Incêndios na Amazônia brasileira: estimativa da emissão de gases do efeito estufa pela queima de diferentes ecossistemas de Roraima na passagem do evento “El Niño” (1197/98). Acta Amazônica 29:513534.CrossRefGoogle Scholar
BARBOSA, R. I., KEIZER, E. & PINTO, F. 2010. Ecossistemas terrestres de Roraima: área e modelagem espacial da biomassa. Pp. 347368 in Barbosa, R. I. & Melo, V. F. (eds.) Roraima: homem, ambiente e ecologia. FEMACT, Boa Vista. 644 pp.Google Scholar
BARLOW, J. & PERES, C. A. 2008. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 363:17871794.CrossRefGoogle Scholar
BARLOW, J., PERES, C. A., LAGAN, B. O. & HAUGAASEN, T. 2003. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters 6:68.CrossRefGoogle Scholar
BOWMAN, D. M. J. S., BALCH, J. K., ARTAXO, P., BOND, W. J., CARLSON, J. M., COCHRANE, M. A., D'ANTONIO, C. M., DEFRIES, R. S., DOYLE, J. C., HARRISON, S. P., JOHNSTON, F. H., KEELEY, J. E., KRAWCHUK, M. A., KULL, C. A., MARSTON, J. B., MORITZ, M. A., PRENTICE, I. C., ROOS, C. I., SCOTT, A. C., SWETNAM, T. W., VAN DER WERF, G. R. & PYNE, S. J. 2009. Fire in the Earth system. Science 324:481484.CrossRefGoogle ScholarPubMed
BRANDO, P. M., NEPSTAD, D. C., BALCH, J. K., BOLKER, B. M., CHRISTMAN, M. C., COE, M. T. & PUTZ, F. E. 2012. Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Global Change Biology 18:630641.CrossRefGoogle Scholar
BROWN, S., GILLESPIE, A. J. R. & LUGO, A. E. 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science 35:881902.Google Scholar
BUSH, M. B., SILMAN, M. R., MCMICHAEL, C. & SAATCHI, S. 2008. Fire, climate change and biodiversity in Amazonia: a Late-Holocene perspective. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363:17951802.CrossRefGoogle ScholarPubMed
CHAVE, J., ANDALO, C., BROWN, S., CAIRNS, M. A, CHAMBERS, J. Q., EAMUS, D., FÖLSTER, H., FROMARD, F., HIGUCHI, N., KIRA, T., LESCURE, J., NELSON, B. W., OGAWA, H., PUIG, H., RIÉRA, B. & YAMAKURA, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:8799.CrossRefGoogle ScholarPubMed
COCHRANE, M. A. & BARBER, C. P. 2009. Climate change, human land use and future fires in the Amazon. Global Change Biology 15:601612.CrossRefGoogle Scholar
COCHRANE, M. A. & LAURANCE, W. F. 2002. Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology 18:311325.CrossRefGoogle Scholar
COCHRANE, M. A. & SCHULZE, M. D. 1999. Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31:216.Google Scholar
COCHRANE, M. A., ALENCAR, A., SCHULZE, M., SOUZA, C., NEPSTAD, D. C., LEFEBVRE, P. & DAVIDSON, E. 1999. Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284:18321835.CrossRefGoogle ScholarPubMed
D'OLIVEIRA, M. V. N., ALVARADO, E. C., SANTOS, J. C. & CARVALHO, J. A. 2011. Forest natural regeneration and biomass production after slash and burn in a seasonally dry forest in the Southern Brazilian Amazon. Forest Ecology and Management 261:14901498.CrossRefGoogle Scholar
EMBRAPA, 2004. Espécies arbóreas da Amazônia N° 6: Angelim-vermelho Dinizia excelsa. EMBRAPA Amazônia Oriental, Projeto Dendrogene, Belém, Pará. 1 pp.Google Scholar
FEARNSIDE, P. M. 1997. Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90:5987.CrossRefGoogle Scholar
FEARNSIDE, P. M., GRAÇA, P. M. L. A. & RODRIGUES, F. J. A. 2001. Burning of Amazonian rainforests: burning efficiency and charcoal formation in forest cleared for cattle pasture near Manaus, Brazil. Forest Ecology and Management 146:115128.CrossRefGoogle Scholar
FEARNSIDE, P., BARBOSA, R. & GRAÇA, P. M. L. A. 2007. Burning of secondary forest in Amazonia: biomass, burning efficiency and charcoal formation during land preparation for agriculture in Apiaú, Roraima, Brazil. Forest Ecology and Management 242:678687.CrossRefGoogle Scholar
GERWING, J. J. 2002. Degradation of forests through logging and fire in the eastern Brazilian Amazon. Forest Ecology and Management 157:131141.CrossRefGoogle Scholar
GONÇALVES, F. G. & SANTOS, J. R. 2008. Floristic composition and structure of a sustainable forest management unit at Tapajos National Forest, Pará, Brazil. Acta Amazônica 38:229244.CrossRefGoogle Scholar
GRAÇA, P. M. L. A., FEARNSIDE, P. M. & CERRI, C. C. 1999. Burning of Amazonian forest in Ariquemes, Rondônia, Brazil: biomass, charcoal formation and burning efficiency. Forest Ecology and Management 120:179191.Google Scholar
HAUGAASEN, T., BARLOW, J. & PERES, C. A. 2003. Surface wildfires in central Amazonia: short-term impact on forest structure and carbon loss. Forest Ecology and Management 179:321331.CrossRefGoogle Scholar
IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis) 1998. Avaliação rápida dos danos ambientais dos incêndios que atingiram as florestas de Roraima em 1998. Technical Report. IBAMA, Brasília. 87 pp.Google Scholar
IBGE (Instituto Brasileiro de Geografia e Estatística). 1992. Manual Técnico da Vegetação Brasileira. Manuais Técnicos em Geociências, n.1. IBGE, Rio de Janeiro. 92 pp.Google Scholar
MALHI, Y., WOOD, D., BAKER, T. R., WRIGHT, J., PHILLIPS, O. L., COCHRANE, T., MEIR, P., CHAVE, J., ALMEIDA, S., ARROYO, L., HIGUCHI, N., KILLEEN, T. J., LAURANCE, S. G., LAURANCE, W. F., LEWIS, S. L., MONTEAGUDO, A., NEILL, D. A., NUNEZ VARGAS, P., PITMAN, C. A., QUESADA, C. A., SALOMAO, R., SILVA, J. N. M. & LEZAMA, A. T. 2006. The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology 12:11071138.CrossRefGoogle Scholar
NELSON, B. W., MESQUITA, R., PEREIRA, J. L. G., SOUZA, S. G. A., BATISTA, G. T. & COUTO, L. B. 1999. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management 117:149167.CrossRefGoogle Scholar
NUMATA, I., COCHRANE, M. A. & GALVÃO, L. S. 2011. Analyzing the impacts of frequency and severity of forest fire on the recovery of disturbed forest using Landsat time series and EO-1 Hyperion in the southern Brazilian Amazon. Earth Interactions 15:117.CrossRefGoogle Scholar
OLIVEIRA, A. N. D., AMARAL, I. L. D., RAMOS, M. B. P., NOBRE, A. D., COUTO, L. B. & SAHDO, R. M. 2008. Composição e diversidade florístico-estrutural de um hectare de floresta densa de terra firme na Amazônia Central, Amazonas, Brasil. Acta Amazonica 38:627641.CrossRefGoogle Scholar
SAATCHI, S. S., HOUGHTON, R. A., ALVALÁ, R. C. S., SOARES, J. V. & YU, Y. 2007. Distribution of aboveground live biomass in the Amazon basin. Global Change Biology 13:816837.CrossRefGoogle Scholar
SALAZAR, L. F., NOBRE, C. A. & OYAMA, M. D. 2007. Climatic change consequences on the biome distribution in tropical South America. Geophysical Research Letters 34:L09708.CrossRefGoogle Scholar
SALDARRIAGA, J. G., WEST, D. C., THARP, M. & UHL, C. 1988. Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. Journal of Ecology 76:938958.CrossRefGoogle Scholar
SHAPIRO, S. S. & WILK, M. B. 1965. An analysis of variance test for normality (complete samples). Biometrika 52:591611.CrossRefGoogle Scholar
SLIK, J. W. F., BERNARD, C. S., VAN BEEK, M., BREMAN, F. C. & EICHHORN, K. A. O. 2008. Tree diversity, composition, forest structure and aboveground biomass dynamics after single and repeated fire in a Bornean rain forest. Oecologia 158:579588.CrossRefGoogle Scholar
SLIK, J. W. F., BREMAN, F. C., BERNARD, C., VAN BEEK, M., CANNON, C. H., EICHHORN, K. A. O. & SIDIYASA, K. 2010. Fire as a selective force in a Bornean tropical everwet forest. Oecologia 164:841849.CrossRefGoogle Scholar
SNEDECOR, G. W. & COCHRAN, W. G. 1989. Statistical methods. (Eighth edition). Iowa State University Press, Ames, Iowa. 491 pp.Google Scholar
UHL, C., CLARK, K., CLARK, H. & MURPHY, P. 1981. Early plant succession after cutting and burning in the upper Rio Negro region of the Amazon Basin. Journal of Ecology 69:631649.CrossRefGoogle Scholar
XAUD, M. 1998. Avaliação de dados TM/LANDSAT e SAR/JERS na caracterização da cobertura vegetal e distribuição de fitomassa em áreas de contato floresta/savana no Estado de Roraima. Instituto Nacional de Pesquisas Espaciais, São José dos Campos. 151 pp.Google Scholar
YANG, C., RANDERSON, J. T., MORTON, D. C., DEFRIES, R. S., COLLATZ, G. J., KASIBHATLA, P. S., GIGLIO, L., YUFANG, J. & MARLIER, M. E. 2011. Forecasting fire season severity in South America using sea surface temperature anomalies. Science 334:787791.Google Scholar
ZARIN, D. J., DAVIDSON, E. A., BRONDÍZIO, E., VIEIRA, I. C. G., SA, T., FELDPAUSCH, T., SCHUUR, E. A., MESQUITA, R., MORAN, E., DELAMONICA, P., DUCEY, M. J., HURTT, G. C., SALIMON, C. & DENICH, M. 2005. Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Frontiers in Ecology and the Environment 3:365369.CrossRefGoogle Scholar