Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T01:26:52.758Z Has data issue: false hasContentIssue false

The discovery of devil's gardens: an ant–plant mutualism in the cloud forests of the Eastern Amazon

Published online by Cambridge University Press:  10 May 2016

Alex Salas-Lopez*
Affiliation:
CNRS; UMR – Écologie des Forêts de Guyane (EcoFoG; AgroParisTech, Cirad, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, 97379 Kourou cedex, France
Stanislas Talaga
Affiliation:
CNRS; UMR – Écologie des Forêts de Guyane (EcoFoG; AgroParisTech, Cirad, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, 97379 Kourou cedex, France Université de Guyane; UMR – EcoFoG (AgroParisTech, Cirad, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, 97379 Kourou cedex, France
Hadrien Lalagüe
Affiliation:
INRA; UMR – EcoFoG (AgroParisTech, Cirad, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, 97379 Kourou cedex, France
*
1Corresponding author. Email: [email protected]

Abstract:

Devil's gardens are one of the most remarkable mutualistic associations between ants and plants. Myrmelachista ants eliminate all vegetation from around their host plants, resulting in wide forest clearings which have intrigued scientists from the start. Despite their noticeability, here we report the discovery of devil's gardens in remote highland cloud forests of the Eastern Amazon, more than 2000 km away from their nearest known analogues in Western Amazonia. We describe the ecological characteristics of these gardens and consider what factors could have produced the geographic isolation of Eastern Amazonian devil's gardens. Three hypotheses are investigated: (1) the host plant distribution restricts the distribution of the mutualism, (2) the ecological tolerances of Myrmelachista explain the isolation, and (3) the devil's gardens of the Eastern Amazon constitute relicts from ancient forest refugia. The distribution of the possible associated myrmecophytes and previously described ecological ranges of devil's gardens cannot explain their ecological restriction to cloud forests in Eastern Amazonia, but our discovery is consistent with the biogeographic refuge hypothesis (i.e. highlands along the Amazon Basin constitute refugia for humid forests that spread during the Cenozoic). Our finding opens exciting perspectives for comparative studies of the origin, ecology and evolutionary history of this ant–plant mutualism.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

CAMPBELL, D. G., RICHARDSON, P. M. & ROSAS, A. 1989. Field screening for allelopathy in tropical forest trees, particularly Duroia hirsuta, in the Brazilian Amazon. Biochemical Systematics and Ecology 17:403407.CrossRefGoogle Scholar
CREMERS, G., FEUILLET, C., DE GRANVILLE, J. J., HOFF, M., GRACIE, C. A. & MORI, S. A. 1993. Inventaire des phanérogames et des ptéridophytes de la région de Saül (Guyane Française). Pp. 89104 in Sepanguy (ed.) Gestion de l'écosystème forestier et aménagement de l'espace régional: actes du 2e Congrès régional de l'environnement. Nature Guyanaise, Cayenne.Google Scholar
DE GRANVILLE, J.-J. 1991. Remarks on the montane flora and vegetation types of the Guianas. Willdenowia 21:201213.Google Scholar
DEJEAN, A., QUILICHINI, A., DELABIE, J. H. C., ORIVEL, J., CORBARA, B. & GIBERNAU, M. 2004. Influence of its associated ant species on the life history of the myrmecophyte Cordia nodosa in French Guiana. Journal of Tropical Ecology 20:701704.CrossRefGoogle Scholar
DELNATTE. 2010. Le gradient altitudinal sur les sommets tabulaires de Guyane, basé sur l'étude des Arecaceae, des Melastomataceae et des Ptéridophytes. Université des Antilles-Guyane, Cayenne. 293 pp.Google Scholar
EDWARDS, D. P., FREDERICKSON, M. E., SHEPARD, G. H. & YU, D. W. 2009. A plant needs ants like a dog needs fleas: Myrmelachista schumanni ants gall many tree species to create housing. American Naturalist 174:734740.CrossRefGoogle Scholar
EMERY, C. 1890. Voiyage de M. E. Simon au Venezuela (Décembre 1887 – Avril 1888). Formicides. Annales de la Société Entomologique de France 10:5576.Google Scholar
FONSECA, C. R. 1999. Amazonian ant–plant interactions and the nesting space limitation hypothesis. Journal of Tropical Ecology 15:807825.CrossRefGoogle Scholar
FREDERICKSON, M. E. & GORDON, D. M. 2007. The devil to pay: a cost of mutualism with Myrmelachista schumanni ants in ‘devil's gardens’ is increased herbivory on Duroia hirsuta trees. Proceedings of the Royal Society B: Biological Sciences 274:11171123.Google Scholar
FREDERICKSON, M. E. & GORDON, D. M. 2009. The intertwined population biology of two Amazonian myrmecophytes and their symbiotic ants. Ecology 90:15951607.Google Scholar
FREDERICKSON, M. E., GREENE, M. J. M. J. & GORDON, D. M. 2005. ‘Devil's gardens’ bedevilled by ants. An ant species uses herbicidal weaponery to secure its own niche in the Amazonian rainforest. Nature 437:495496.Google Scholar
HAFFER, J. & PRANCE, G. T. 2001. Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana 16:579607.Google Scholar
HIJMANS, R. J., CAMERON, S. E., PARRA, J. L., JONES, P. G. & JARVIS, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:19651978.CrossRefGoogle Scholar
MORAWETZ, W., HENZL, M. & WALLNÖFER, B. 1992. Tree killing by herbicide producing ants for the establishment of pure Tococa occidentalis populations in the Peruvian Amazon. Biodiversity and Conservation 1:1933.Google Scholar
OLESEN, J. M., LINDBERG, A. B., ESKILDSENL, L. I., SVENNING, J. C. & LINDBERG, R. 2002. Plants in the devil's garden: intruders in an ant-plant mutualism. Ecotropica 8:8186.Google Scholar
PAGE, J. E., MADRIÑÁN, S. & TOWERS, G. H. N. 1994. Identification of a plant-growth inhibiting iridoid lactone from Duroia hirsuta, the allelopathic tree of the ‘Devil's Garden’. Experientia 50:840842.Google Scholar
PFANNES, K. R. & BAIER, A. C. 2002. ‘Devil's Gardens’ in the Ecuadorian Amazon – association of the allelopathic tree Duroia hirsuta (Rubiaceae) and its ‘gentle’ ants. Revista de Biología Tropical 50:293301.Google ScholarPubMed
RENNER, S. S. & RICKLEFS, R. E. 1998. Herbicidal activity of domatia-inhabiting ants in patches of Tococa guianensis and Clidemia heterophylla. Biotropica 30:324327.Google Scholar
SCHULTES, R. E. 1985. De plantis toxicariis e mundo novo tropicale. Commentationes XXXIV: biodynamic rubiaceous plants of the Northwest Amazon. Journal of Ethnopharmacology 14:105124.Google Scholar
SOLANO, P. J., DUROU, S., CORBARA, B., QUILICHINI, A., CERDAN, P., BELIN-DEPOUX, M., DELABIE, J. H. C. & DEJEAN, A. 2003. Myrmecophytes of the understory of French Guianian rainforests: their distribution and their associated ants. Sociobiology 41:605614.Google Scholar