Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T13:46:10.102Z Has data issue: false hasContentIssue false

Derivation of diameter measurements for buttressed trees, an example from Gabon

Published online by Cambridge University Press:  12 April 2012

Alfred Ngomanda
Affiliation:
IRET, BP 13354, Libreville, Gabon
Quentin Moundounga Mavouroulou
Affiliation:
Département de Biologie, Faculté des Sciences de l'Université des Sciences et Technique de Masuku, BP 901, Franceville, Gabon
Nestor Laurier Engone Obiang
Affiliation:
IRET, BP 13354, Libreville, Gabon
Donald Midoko Iponga
Affiliation:
IRET, BP 13354, Libreville, Gabon
Jacques-François Mavoungou
Affiliation:
IRET, BP 13354, Libreville, Gabon
Nicaise Lépengué
Affiliation:
Département de Biologie, Faculté des Sciences de l'Université des Sciences et Technique de Masuku, BP 901, Franceville, Gabon
Nicolas Picard*
Affiliation:
IRET, BP 13354, Libreville, Gabon CIRAD, Campus de Baillarguet, TA C-37D, 34398 Montpellier cedex 5, France
Bertrand Mbatchi
Affiliation:
Département de Biologie, Faculté des Sciences de l'Université des Sciences et Technique de Masuku, BP 901, Franceville, Gabon
*
1Corresponding author. Email: [email protected]

Extract

Many tropical tree species have buttresses at the standard breast height (1.3 m above ground) of diameter measurement, with a presumable role in improving nutrient acquisition or tree anchorage in the ground (Newbery et al. 2009, Richter 1984). Measuring the diameter using standard dendrometrical tools such as callipers or graduated tapes, which require that the cross-section of the trunk has a convex shape, is then impossible (Nogueira et al. 2006). The recommended method in this case is to measure the diameter above the buttress (DAB), thus possibly leading to biased estimates of the basal area (West 2009), of tree above-ground biomass (Dean & Roxburgh 2006, Dean et al. 2003) and of tree growth (Metcalf et al. 2009). As an alternative, one can measure the basal area at breast height of buttressed trees, using a method that can deal with the irregular non-convex shape of the cross-section of the stem such as the Picus calliper, photogrammetry or 3D laser scanning (Badia et al. 2003, Dean 2003, Newbery et al. 2009).

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BADIA, M., HAPCA, A., CONSTANT, T., MOTHE, F., LEBAN, J. M., SAINT-ANDRÉ, L., DAQUITAINE, R. & BLAISE, F. 2003. Tree shape measurement at the stand level for biomass, volume and wood properties assessment. Pp. 360371 in Hu, B. G. & Jaeger, M. (eds.). Plant growth modeling and applications. Proceedings PMA03. Tsinghua University Press, Beijing.Google Scholar
CHAVE, J., ANDALO, C., BROWN, S., CAIRNS, M. A., CHAMBERS, J. Q., EAMUS, D., FÖLSTER, H., FROMARD, F., HIGUCHI, N., KIRA, T., LESCURE, J. P., NELSON, B. W., OGAWA, H., PUIG, H., RIÉRA, B. & YAMAKURA, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:8799.CrossRefGoogle ScholarPubMed
DEAN, C. 2003. Calculation of wood volume and stem taper using terrestrial single-image close-range photogrammetry and contemporary software tools. Silva Fennica 37:359380.CrossRefGoogle Scholar
DEAN, C. & ROXBURGH, S. 2006. Improving visualisation of mature, high-carbon sequestering forests. Forest, Biometry, Modelling and Information Science 1:4869.Google Scholar
DEAN, C., ROXBURGH, S. & MACKEY, B. 2003. Growth modelling of Eucalyptus regnans for carbon accounting at the landscape scale. Pp. 2739 in Amaro, A., Reed, D. & Soares, P. (eds.). Modelling forest systems. CAB International Publishing, Wallingford.Google Scholar
DOUMENGE, C. 1990. Contribution à l’étude des structures de populations d'arbres des forêts d'Afrique centrale (exemples du Gabon, Cameroun et Congo). Ph.D. thesis, Université Montpellier 2, Montpellier, France.Google Scholar
METCALF, C. J. E., CLARK, J. S. & CLARK, D. A. 2009. Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology 25:112.CrossRefGoogle Scholar
NEWBERY, D. M., SCHWAN, S., CHUYONG, G. B. & VAN DER BURGT, X. M. 2009. Buttress form of the central African rain forest tree Microberlinia bisulcata, and its possible role in nutrient acquisition. Trees 23:219234.CrossRefGoogle Scholar
NOGUEIRA, E. M., NELSON, B. W. & FEARNSIDE, P. M. 2006. Volume and biomass of trees in central Amazonia: influence of irregularly shaped and hollow trunks. Forest Ecology and Management 227:1421.CrossRefGoogle Scholar
PALLARDY, S. G. 2008. Physiology of woody plants. (Third edition). Academic Press, Burlington.Google Scholar
RICHTER, W. 1984. A structural approach to the function of buttresses of Quararibea asterolepis. Ecology 65:14291435.CrossRefGoogle Scholar
SILLETT, S. C., VAN PELT, R., KOCH, G. W., AMBROSE, A. R., CARROLL, A. L., ANTOINE, M. E. & MIFSUD, B. M. 2010. Increasing wood production through old age in tall trees. Forest Ecology and Management 259:976994.CrossRefGoogle Scholar
UNESCO 1987. Makokou Gabon, a research station in tropical forest ecology: overview and publications (1962–1986). IRET, ECOTROP (CNRS), and Unesco, Paris. 55 pp.Google Scholar
WEST, P. W. 2009. Tree and forest measurement. (Second edition). Springer-Verlag, Berlin. 191 pp.CrossRefGoogle Scholar
Supplementary material: File

Ngomanda supplementary Appendix

Ngomanda supplementary Appendix

Download Ngomanda supplementary Appendix(File)
File 61.4 KB