Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T13:56:39.091Z Has data issue: false hasContentIssue false

Demography and biomass change in monodominant and mixed old-growth forest of the Congo

Published online by Cambridge University Press:  02 August 2011

Jean-Remy Makana
Affiliation:
Wildlife Conservation Society – DRC Program, Kinshasa, DR Congo
Corneille N. Ewango
Affiliation:
Centre de Formation et de Recherche en Conservation Forestiere (CEFRECOF), Wildlife Conservation Society, Kinshasa, DR Congo
Sean M. McMahon
Affiliation:
Smithsonian Tropical Research Institute & Smithsonian Environmental Research Center, Edgewater, Maryland, USA
Sean C. Thomas
Affiliation:
Faculty of Forestry, University of Toronto, Toronto, Canada
Terese B. Hart
Affiliation:
Project TL2, Kinshasa, DR Congo
Richard Condit*
Affiliation:
Center for Tropical Forest Science, Smithsonian Tropical Research Institute, Panama MRC 0580-12, Unit 9100 Box 0948, DPO AA 34002USA
*
1Corresponding author. Email: [email protected]

Abstract:

Mbau forest covers much of the Congo, and shifts in its composition could have a large impact on the African tropics. The Ituri forest in east Congo is near a boundary between the monodominant mbau type and non-mbau mixed forest, and two 20-ha censuses of trees ≥ 1 cm diameter were carried out over 12 y to monitor forest change. Based on published diameter allometry, mbau forest had 535 Mg ha−1 biomass above ground and gained 1.1 Mg ha−1 y−1. Mixed forest had 399 Mg ha−1 and gained 3 Mg ha−1 y−1. The mbau tree (Gilbertiodendron dewevrei) increased its share of biomass from 4.1% to 4.4% in mixed forest; other common species also increased. Sapling density declined at both sites, likely because increased biomass meant shadier understorey, but the mbau tree increased in sapling density, suggesting it will become more important in the future. Tree mortality and growth rates were low relative to other tropical forests, especially in the mbau plots. Shifting toward G. dewevrei would represent a large gain in carbon in the mixed forest, but mbau is presently more important as a high-carbon stock: biomass lost during forest harvest could not recuperate for centuries due to slow community dynamics.

Type
Research Article
Creative Commons
This is a work of the U.S. Government and is not subject to copyright protection in the United States
Copyright
Copyright © Cambridge University Press 2011. This is a work of the U.S. Government and is not subject to copyright protection in the United States.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BAKER, T., PHILLIPS, O., MALHI, Y., ALMEIDA, S., ARROYO, L., DI FIORE, A., ERWIN, T., HIGUCHI, N., KILLEEN, T., LAURANCE, S., LAURANCE, W., LEWIS, S., MONTEAGUDO, A., NEILL, D., NUNEZ VARGAS, P., PITMAN, N., SILVA, J. & VASQUEZ MARTINEZ, R. 2004. Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal Society London, B, Biological Sciences 359:353365.Google Scholar
BRNCIC, T., WILLIS, K., HARRIS, D. & WASHINGTON, R. 2007. Culture or climate? The relative influence of past processes on the composition of the lowland Congo rainforest. Philosophical Transactions of the Royal Society London, B, Biological Sciences 362:229242.CrossRefGoogle ScholarPubMed
CHAVE, J., ANDALO, C., BROWN, S., CAIRNS, M. A., CHAMBERS, J. Q., EAMUS, D., FÖLSTER, H., FROMARD, F., HIGUCHI, N., KIRA, T., LESCURE, J.-P., NELSON, B. W., OGAWA, H., PUIG, H., RIÈRA, B. & YAMAKURA, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:8799.CrossRefGoogle ScholarPubMed
CHAVE, J., CONDIT, R., MULLER-LANDAU, H. C., THOMAS, S. C., ASHTON, P. S., BUNYAVEJCHEWIN, S., CO, L. L., DATTARAJA, H. S., DAVIES, S. J., ESUFALI, S., EWANGO, C. E. N., FEELEY, K. J., FOSTER, R. B., GUNATILLEKE, N., GUNATILLEKE, S., HALL, P., HART, T. B., HERNÁNDEZ, C., HUBBELL, S. P., ITOH, A., KIRATIPRAYOON, S., LAFRANKIE, J. V., DE LAO, S. L., MAKANA, J.-R., NOOR, M. N. S., KASSIM, A. R., SAMPER, C., SUKUMAR, R., SURESH, H. S., TAN, S., THOMPSON, J., TONGCO, M. D. C., VALENCIA, R., VALLEJO, M., VILLA, G., YAMAKURA, T., ZIMMERMAN, J. K. & LOSOS, E. C. 2008. Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biology 6:e45.CrossRefGoogle ScholarPubMed
CHAVE, J., COOMES, D., JANSEN, S., LEWIS, S. L., SWENSON, N. G. & ZANNE, A. E. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12:351366.CrossRefGoogle ScholarPubMed
CONDIT, R. 1995. Research in large, long-term tropical forest plots. Trends in Ecology and Evolution 10:1822.Google Scholar
CONDIT, R. 1998. Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Springer-Verlag, Berlin. 211 pp.Google Scholar
CONDIT, R., HUBBELL, S. P. & FOSTER, R. B. 1995. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs 65:419429.CrossRefGoogle Scholar
CONDIT, R., HUBBELL, S. P. & FOSTER, R. B. 1996. Changes in a tropical forest with a shifting climate: results from a 50 ha permanent census plot in Panama. Journal of Tropical Ecology 12:231256.Google Scholar
CONDIT, R., AGUILAR, S., HERNANDEZ, R., PÉREZ, R., LAO, S., ANGEHR, G., HUBBELL, S. & FOSTER, R. 2004. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. Journal of Tropical Ecology 20:5172.Google Scholar
CONDIT, R., ASHTON, P., BUNYAVEJCHEWIN, S., DATTARAJA, H. S., DAVIES, S., ESUFALI, S., EWANGO, C., FOSTER, R., GUNATILLEKE, I. A. U. N., GUNATILLEKE, C. V. S., HALL, P., HARMS, K. E., HART, T., HERNANDEZ, C., HUBBELL, S., ITOH, A., KIRATIPRAYOON, S., LAFRANKIE, J., DE LAO, S. L., MAKANA, J.-R., NOOR, M. N. S., KASSIM, A. R., RUSSO, S., SUKUMAR, R., SAMPER, C., SURESH, H. S., TAN, S., THOMAS, S., VALENCIA, R., VALLEJO, M., VILLA, G. & ZILLIO, T. 2006. The importance of demographic niches to tree diversity. Science 313:98101.Google Scholar
GIRESSE, P., MALEY, J. & BRENAC, P. 1994. Late quaternary paleoenvironments in the lake Barombi Mbo (West Cameroon) deduced from pollen and carbon isotopes of organic matter. Palaeogeography, Palaeoclimatology, Palaeoecology 107:6578.CrossRefGoogle Scholar
GLOOR, M., PHILLIPS, O. L., LLOYD, J. J., LEIS, S. L., MALHI, Y., BAKER, T. R., LOPEZ-GONZALEZ, G., PEACOCK, J., ALMEIDA, S., DEOLIVEIRA, A. C. A., ALVAREZ, E., AMARAL, I., ARROYO, L., AYMARD, G., BANKI, O., BLANC, L., BONAL, D., BRANDO, P., CHAO, K. J., CHAVE, J., DAVILA, N., ERIN, T., SILVA, J., DIIFIORE, A., FELDPAUSCH, T. R., FREITAS, A., HERRERA, R., HIGUCHI, N., HONORIO, E., JIMENEZ, E., KILLEEN, T., LAURANCE, W., MENDOZA, C., MONTEAGUDO, A., ANDRADE, A., NEILL, D., NEPSTAD, D., NUNEZ-VARGAS, P., PENUELA, M. C., PEÑACRUZ, A., PRIETO, A., PITMAN, N., QUESADA, C., SALOMÃO, R., SILVEIRA, M., SCHWARZ, M., STROPP, J., RAMIREZ, F., RAMÍREZ, H., RUDAS, A., TERSTEEGE, H., SILVA, N., TORRES, A., TERBORGH, J., VASQUEZ, R. & VANDERHEIJDEN, G. 2009. Does the disturbance hypothesis explain the biomass increase in basin-wide Amazon forest plot data? Global Change Biology 15:24182430.Google Scholar
GRIER, G. & LOGAN, R. 1977. Old-growth Pseudotsuga menziesii communities of a western Oregon watershed: biomass distribution and production budgets. Ecological Monographs 47:373400.Google Scholar
HART, J. & CARRICK, P. 1996. Climate of the Réserve de Faune à Okapis: Rainfall and temperature in the Epulu sector, 1986–1995. Technical Report no. 2, Centre de Formation et de Recherche en Conservation Forestière, Epulu, Democratic Republic of Congo.Google Scholar
HART, T., HART, J., DECHAMPS, R., FOURNIER, M. & ATAHOLO, M. 1996. Changes in forest composition over the last 4000 years in the Ituri Basin, Zaire. Pp. 545563 in van der Maesen, L. J. G., van der Burgt, X. M. & van Medenbach de Rooy, J. M. (eds.). Biodiversity of African plants. XIVth Congress of the Association-pour-l'Etude-Taxonomique-de-la-Flore-d-Afrique-Tropicale (AETFAT), Wageningen, the Netherlands, 2227 August 1994. Kluwer Academic Publishers, Dordrecht. 861 pp.Google Scholar
HART, T. B. 1990. Monospecific dominance in tropical rain forests. Trends in Ecology and Evolution 5:610.CrossRefGoogle ScholarPubMed
HART, T. B., HART, J. A. & MURPHY, P. G. 1989. Monodominant and species rich forests of the humid tropics: causes of their coexistence. American Naturalist 133:613633.CrossRefGoogle Scholar
HUBBELL, S. P. & FOSTER, R B. 1983. Diversity of canopy trees in a neotropical forest and implications for conservation. Pp. 2541 in Whitmore, T. C., Chadwick, A. & Sutton, A. (eds.). Tropical rain forest: ecology and management. Blackwell Scientific, Oxford.Google Scholar
KÖRNER, C. 2009. Responses of humid tropical trees to rising CO2. Annual Review of Ecology and Systematics 40:6179.Google Scholar
LEBRUN, J. & GILBERT, G. 1954. Une classification écologique des forêts du Congo belge. Institut National pour l'Etude Agronomique du Congo, Brussels, Série Scientifique no. 63. 89 pp.Google Scholar
LEWIS, S., PHILLIPS, O., BAKER, T., LLOYD, J., MALHI, Y., ALMEIDA, S., HIGUCHI, N., LAURANCE, W., NEILL, D., SILVA, J., TERBORGH, J., LEZAMA, A., MARTINEZ, R., BROWN, S., CHAVE, J., KUEBLER, C., VARGAS, P. & VINCETI, B. 2004a. Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society of London, B, Biological Sciences 359:421436.CrossRefGoogle ScholarPubMed
LEWIS, S. L., MALHI, Y. & PHILLIPS, O. L. 2004b. Fingerprinting the impacts of global change on tropical forests. Philosophical Transactions of the Royal Society London, B, Biological Sciences 359:437–62.Google Scholar
LEWIS, S. L., LOPEZ-GONZALEZ, G., SONKÉ, B., AFFUM-BAFFOE, K., BAKER, T. R., OJO, L. O., PHILLIPS, O. L., REITSMA, J. M., WHITE, L., COMISKEY, J. A., DJUIKOUO, K. M.-N., EWANGO, C. E. N., FELDPAUSCH, T. R., HAMILTON, A. C., GLOOR, M., HART, T., HLADIK, A., LLOYD, J., LOVETT, J. C., MAKANA, J.-R., MALHI, Y., MBAGO, F. M., NDANGALASI, H. J., PEACOCK, J., PEH, K. S.-H., SHEIL, D., SUNDERLAND, T., SWAINE, M. D., TAPLIN, J., TAYLOR, D., THOMAS, S. C., VOTERE, R. & WÖLL, H. 2009. Increasing carbon storage in intact African tropical forests. Nature 457:10031006.Google Scholar
MAKANA, J.-R. & THOMAS, S. C. 2005. Effects of light-gaps and litter removal on the seedling performance of six African timber species. Biotropica 37:227237.Google Scholar
MAKANA, J.-R., HART, T., HIBBS, D. & CONDIT, R. 2004a. Forest structure and diversity in the Ituri forest dynamics plots. Pp. 159174 in Losos, E. & Leigh, E. (eds.). Tropical forest diversity and dynamism: findings from a large-scale network. University of Chicago Press, Chicago.Google Scholar
MAKANA, J.-R., HART, T. B., EWANGO, C., LIENGOLA, I., HART, J. A. & CONDIT, R. 2004b. Ituri forest dynamics plots, DRC. Pp. 492505 in Losos, E. & Leigh, E. (eds.). Tropical forest diversity and dynamism: findings from a large-scale network. University of Chicago Press, Chicago.Google Scholar
MALEY, J. 2002. A catastrophic destruction of African forests about 2500 years ago still exerts a major influence on present vegetation formations. IDS Bulletin 33:1330.Google Scholar
MANOKARAN, N. & KOCHUMMEN, K. 1987. Recruitment, growth and mortality of tree species in a lowland dipterocarp forest in Peninsular Malaysia. Journal of Tropical Ecology 3:315330.Google Scholar
MULLER-LANDAU, H. C. 2009. Carbon cycle: sink in the African jungle. Nature 457:969970.Google Scholar
PHILLIPS, O. & GENTRY, A. 1994. Increasing turnover through time in tropical forests. Science 263:954958.Google Scholar
PHILLIPS, O., BAKER, T., ARROYO, L., HIGUCHI, N., KILLEEN, T., LAURANCE, W., LEWIS, S., LLOYD, J., MALHI, Y., MONTEAGUDO, A., NEILL, D., VARGAS, P., SILVA, J., TERBORGH, J., MARTINEZ, R., ALEXIADES, M., ALMEIDA, S., BROWN, S., CHAVE, J., COMISKEY, J., CZIMCZIK, C., DI FIORE, A., ERWIN, T., KUEBLER, C., LAURANCE, S., NASCIMENTO, H., OLIVIER, J., PALACIOS, W., PATINO, S., PITMAN, N., QUESADA, C., SALIDAS, M., LEZAMA, A. & VINCETI, B. 2002. Increasing dominance of large lianas in Amazonian forests. Nature 418:770774.Google Scholar
PHILLIPS, O., BAKER, T., ARROYO, L., HIGUCHI, N., KILLEEN, T., LAURANCE, W., LEWIS, S., LLOYD, J., MALHI, Y., MONTEAGUDO, A., NEILL, D., VARGAS, P., SILVA, J., TERBORGH, J., MARTINEZ, R., ALEXIADES, M., ALMEIDA, S., BROWN, S., CHAVE, J., COMISKEY, J., CZIMCZIK, C., DI FIORE, A., ERWIN, T., KUEBLER, C., LAURANCE, S., NASCIMENTO, H., OLIVIER, J., PALACIOS, W., PATINO, S., PITMAN, N., QUESADA, C., SALIDAS, M., LEZAMA, A. & VINCETI, B. 2004. Pattern and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of the Royal Society of London, B, Biological Sciences 359:381407.Google Scholar
RICHARDS, P. W. 1996. The tropical rain forest: an ecological study. (Second edition). Cambridge University Press, Cambridge. 450 pp.Google Scholar
SERVANT, M., MALEY, J., TURCQ, B., ASY, M. L., BRENAC, P., FOURNIER, M. & LEDRU, M. P. 1993. Tropical forest changes during the late Quaternary in Africa and South America lowlands. Global and Planetary Change 7:2540.Google Scholar
STEPHENSON, N. L. & VAN MANTGEM, P. J. 2005. Forest turnover rates follow global and regional patterns of productivity. Ecology Letters 8:524531.CrossRefGoogle ScholarPubMed
TORTI, S., COLEY, P. & KURSAR, T. 2001. Causes and consequences of monodominance in tropical lowland forests. American Naturalist 157:141153.CrossRefGoogle ScholarPubMed
VALENCIA, R., FOSTER, R. B., VILLA, G., CONDIT, R., SVENNING, J.-C., HERNANDEZ, C., ROMOLEROUX, K., LOSOS, E., MAGARD, E. & BALSLEV, H. 2004. Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology 92:214229.Google Scholar
VALENCIA, R., CONDIT, R., MULLER-LANDAU, H., HERNANDEZ, C. & NAVARRETE, H. 2009. Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical Ecology 25:473482.Google Scholar
VAN GROENENDAEL, J., BULLOCK, S. & PÉREZ JIMENEZ, L. 1996. Aspects of the population biology of the gregarious tree Cordia elaeagnoides in Mexican tropical deciduous forest. Journal of Tropical Ecology 12:1124.Google Scholar
WHITE, L. J. T. & OATES, J. F. 1999. New data on the history of the plateau forest of Okomu, southern Nigeria: an insight into how human disturbance has shaped the African rain forest. Global Ecology and Biogeography 8:355361.Google Scholar
WRIGHT, S. J. 2005. Tropical forests in a changing environment. Trends in Ecology and Evolution 20:553560.Google Scholar