Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T03:08:23.909Z Has data issue: false hasContentIssue false

Are soils under monodominant Gilbertiodendron dewevrei and under adjacent mixed forests similar? A case study in the Democratic Republic of Congo

Published online by Cambridge University Press:  06 May 2018

Michel Lokonda*
Affiliation:
Institut Facultaire des sciences agronomiques de Yangambi, BP 1232 Kisangani, RD Congo
Vincent Freycon
Affiliation:
CIRAD, UPR Forêts et Sociétés, F-34398 Montpellier, France Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
Sylvie Gourlet-Fleury
Affiliation:
CIRAD, UPR Forêts et Sociétés, F-34398 Montpellier, France Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
Ferdinand Kombele
Affiliation:
Institut Facultaire des sciences agronomiques de Yangambi, BP 1232 Kisangani, RD Congo
*
*Corresponding author. Email: [email protected]

Abstract:

Soil has been proposed as a driver explaining the development of monodominant forests in the tropics, for example, Gilbertiodendron dewevrei forests (GDF) in central Africa. The aim of this study was to compare the physical and chemical properties of soils under GDF with those under an adjacent mixed forest (AMF), while controlling for topography. To this end, we set up sixteen 0.25-ha plots according to forest type and topography (plateau vs. bottomland), in the Yoko forest reserve, Democratic Republic of Congo. In each plot, we measured litter thickness and collected a total of 80 soil samples at depths of 0–5, 5–10, 10–20, 20–40 and 120–150 cm, for standard physical and chemical analyses. When controlling for topography and soil texture, we found that most of the chemical properties of soils under GDF did not differ from those of soils under AMF, particularly acidity, cation concentration, total N and the C:N ratio. The litter layer was 2.3 times thicker under GDF than under AMF stands, and, for a given texture, soils under GDF had a slightly higher organic C concentration in the 0–5 cm soil layer. This study suggests that G. dewevrei stands modify organic matter dynamics, which may be important in maintaining its monodominance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AVERILL, C., TURNER, B. L. & FINZI, A. C. 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543545.CrossRefGoogle ScholarPubMed
CASSART, B., ANGBONGA, A. B., HUGUES, T., ENRIQUE, A. & QUENTIN, P. 2017. Contrasting patterns of carbon sequestration between Gilbertiodendron dewevrei monodominant forests and Scorodophloeus zenkeri mixed forests in the Central Congo basin. Plant and Soil 414:309326.CrossRefGoogle Scholar
CONNELL, J. H. & LOWMAN, M. D. 1989. Low-diversity tropical rain forests: some possible mechanisms for their existence. American Naturalist 134:88119.Google Scholar
CONWAY, D. J. 1992. A comparison of soil parameters in monodominant and mixed forest in the Ituri Forest Reserve, Zaire. BSc (Hons) thesis, University of Aberdeen, Aberdeen, UK.Google Scholar
CORRALES, A., MANGAN, S. A., TURNER, B. L. & DALLING, J. W. 2016. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecology Letters 19:383392.Google Scholar
DABIN, B. 1967. Application des dosages automatiques à l'analyse des sols: essais effectués au laboratoire des Services Scientifiques Centraux de l'ORSTOM à Bondy avec l'autoanalyseur Technicon: 3ème partie. Cahiers ORSTOM, série Pédologie 5:257286.Google Scholar
GÉRARD, P. 1960. Etude écologique de la forêt dense à Gilbertiodendron dewevrei dans la région de l'Uele. INEAC, Série scientifique no. 87. 159 pp.Google Scholar
HART, T. B., HART, J. A. & MURPHY, P. G. 1989. Monodominant and species-rich forests of the humid tropics: causes for their co-occurrence. American Naturalist 133:613633.Google Scholar
HENKEL, T. W. 2003. Monodominance in the ectomycorrhizal Dicymbe corymbosa (Caesalpiniaceae) from Guyana. Journal of Tropical Ecology 19:417437.Google Scholar
HINSINGER, P., PLASSARD, C., TANG, C. & JAILLARD, B. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant and Soil 248: 4359.Google Scholar
KADIMA, E., DELVAUX, D., SEBAGENZI, S. N., TACKW, L. & KABEYAZ, S. M. 2011. Structure and geological history of the Congo Basin: an integrated interpretation of gravity, magnetic and reflection seismic data. Basin Research 23:499527.CrossRefGoogle Scholar
KEARSLEY, E., VERBEECK, H., HUFKENS, K., VAN DE PERRE, F., DOETTER, S., BAERT, G., BEECKMAN, H., BOECKX, P. & HUYGENS, D. 2017. Functional community structure of African monodominant Gilbertiodendron dewevrei forest influenced by local environmental filtering. Ecology and Evolution 7:295304.CrossRefGoogle ScholarPubMed
LETOUZEY, R. 1970. Manuel de botanique forestière: Afrique tropicale. Volume 2A. Centre Technique Forestier Tropical, Nogent-sur-Marne.Google Scholar
LIEBERMAN, M., LIEBERMAN, D., HARTSHORN, G. S. & PERALTA, R. 1985. Small-scale altitudinal variation in lowland wet tropical forest vegetation. Journal of Ecology 73:505516.Google Scholar
NGONGO, M. L., VAN RANST, E., BAERT, G., KASONGO, E. L., VERDOODT, A., MIJINYA, B. B. & MUKALAY, J. M. 2009. Guide des sols en République Démocratique du Congo. Tome I: Etude et Gestion. Don Bosco, Lubumbashi.Google Scholar
NSHIMBA, S. M. 2008. Etude floristique, écologique et phytosociologique des forêts de l'Ile Mbiye à Kisangani. Thèse de Doctorat. Université Libre Bruxelles, 272 pp.Google Scholar
ONGUENE, N. A. & KUYPER, T. W. 2001. Mycorrhizal associations in the rain forest of South Cameroon. Forest Ecology and Management 140:277287.CrossRefGoogle Scholar
ORWIN, K. H., KIRSCHBAUM, M. U. F., JOHN, M. G. S. & DICKIE, I. A. 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecology Letters 14:493502.CrossRefGoogle ScholarPubMed
PANSU, M. & GAUTHEYROU, J. 2006. Handbook of soil analysis. Mineralogical, organic and inorganic methods. Springer, Berlin. 993 pp.Google Scholar
PEH, K. S. H., SONKE, B., LLOYD, J., QUESADA, C. A. & LEWIS, S. L. 2011. Soil does not explain monodominance in a central African tropical forest. PLoS ONE 6: e16996.CrossRefGoogle ScholarPubMed
SABATIER, D., GRIMALDI, M., PREVOST, M.-F., GUILLAUME, J., GODRON, M., DOSSO, M. & CURMI, P. 1997. The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest. Plant Ecology 131:81108.Google Scholar
SPRINGOB, G. & KIRCHMANN, H. 2003. Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biology and Biochemistry 35:629632.Google Scholar
TORTI, S. D. & COLEY, P. D. 1999. Tropical monodominance: a preliminary test of the ectomycorrhizal hypothesis. Biotropica 31:220228.Google Scholar
TORTI, S. D., COLEY, P. D. & KURSAR, T. A. 2001. Causes and consequences of monodominance in tropical lowland forests. American Naturalist 157:141153.Google Scholar
VALENCIA, R., BALSLEV, H. & MINO, G. 1994. High tree alpha-diversity in Amazonian Ecuador. Biodiversity and Conservation 3:2128.CrossRefGoogle Scholar
VALENCIA, R., FOSTER, R. B., VILLA, G., CONDIT, R., SVENNING, J.-C., HERNANDEZ, C., ROMOLEROUX, K., LOSOS, E., MAGARD, E. & BALSLEV, H. 2004. Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology 92:214229.Google Scholar
WRIGHT, S. J. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:114.Google Scholar
ZINN, Y. L., RATTAN, L. T. & RESCK, D. V. S. 2005. Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils. Geoderma 127:168171.Google Scholar