Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T22:40:22.015Z Has data issue: false hasContentIssue false

Annual flooding, survival and recruitment in a rodent population from the Niger River plain in Mali

Published online by Cambridge University Press:  01 July 2008

Laurent Crespin*
Affiliation:
Centre de Biologie et de Gestion des Populations (UMR 022), IRD, Campus international Baillarguet CS 30016, 34988 Montferrier-sur-Lez cedex, France
Yves Papillon
Affiliation:
Centre de Biologie et de Gestion des Populations (UMR 022), IRD, Campus international Baillarguet CS 30016, 34988 Montferrier-sur-Lez cedex, France
Doukary Abdoulaye
Affiliation:
Centre de Biologie et de Gestion des Populations (UMR 022), IRD, Campus international Baillarguet CS 30016, 34988 Montferrier-sur-Lez cedex, France
Laurent Granjon
Affiliation:
Centre de Biologie et de Gestion des Populations (UMR 022), IRD, Campus international Baillarguet CS 30016, 34988 Montferrier-sur-Lez cedex, France
Bruno Sicard
Affiliation:
Centre de Biologie et de Gestion des Populations (UMR 022), IRD, Campus international Baillarguet CS 30016, 34988 Montferrier-sur-Lez cedex, France
*
1Corresponding author. Email: [email protected]

Abstract

Multimammate rats of the genus Mastomys are among the most widespread pest species in Africa. Previous studies of Mastomys population dynamics have generally reported variation in abundance but few have investigated the demographic parameters underlying this variation, and in particular recruitment. Capture-mark-recapture data were collected for Mastomys erythroleucus several times a year from 2000 to 2004 at a site annually flooded by the Niger River in Mali. Closed-population models were used to estimate population abundance. Both seniority (a parameter inversely linked to recruitment) and survival probabilities were estimated by capture-mark-recapture models. The impacts of water level, population abundance and cumulative rainfall were assessed for each demographic parameter. Survival probabilities (local survival) were negatively correlated with water level, suggesting that rodents emigrated out of the study zone during flooding. As for seniority probabilities, 86% of temporal variation was explained by a model with season, abundance, water level and the interaction between abundance and water level. This suggests that density-dependence in recruitment was mediated by intraspecific competition for food or refuge from floodwaters, or by predation. The flood of the Niger River greatly impacts Mastomys erythroleucus population dynamics, affecting both survival and seniority probabilities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AARS, J. & IMS, R. A. 2002. Intrinsic and climatic determinants of population demography: the winter dynamic of tundra voles. Ecology 83:34493456.CrossRefGoogle Scholar
ADLER, G. H. & LAMBERT, T. D. 1997. Ecological correlates of trap response of a neotropical forest rodent Proechimys semispinosus. Journal of Tropical Biology 13:5968.Google Scholar
ANDERSON, K. H. & SHAPIRO, J. 1957. The effects of flooding on a small marsh in Central Connecticut. American Midland Naturalist 57:483492.CrossRefGoogle Scholar
ANIMAL CARE AND USE COMMITTEE. 1998. Guidelines for the capture, handling, and care of mammals as approved by the American Society of Mammalogists. Journal of Mammalogy 79:14161431.CrossRefGoogle Scholar
BATZLI, G. O. 1977. Population dynamics of the White-footed Mouse in floodplain and upland forests. American Midland Naturalist 97:1832.CrossRefGoogle Scholar
BATZLI, G. O. 1983. Responses of Artic rodent populations to nutritional factors. Oikos 40:396406.CrossRefGoogle Scholar
BERRYMAN, A. A. 1999. Principles of population dynamics and their application. Stanley Thornes Publishers Ltd., Cheltenham. 243 pp.Google Scholar
BONDRUP-NIELSEN, S. & IMS, R. A. 1986. Reproduction and spacing behaviour of females in a peak density population of Clethrionomys glareolus. Holarctic Ecology 9:109112.Google Scholar
BOULANGER, J. G. & KREBS, C. J. 1996. Robustness of capture-recapture estimators to sample biases in a cyclic snowshoe hare population. Journal of Applied Ecology 33:530542.CrossRefGoogle Scholar
BOUTIN, S. 1990. Food supplementation experiments with terrestrial vertebrates: patterns, problems, and the future. Canadian Journal of Zoology 68:203220.CrossRefGoogle Scholar
BROWN, J. H., WHITMAN, T. G., ERNEST, S. K. M. & GEHRING, C. A. 2001. Complex species interactions and the dynamics of ecological systems: long-term experiments. Science 293:643650.CrossRefGoogle ScholarPubMed
BROWN, P. R. & SINGLETON, G. R. 1999. Rate of increase as a function of rainfall for house mouse Mus domesticus populations in a cereal-growing region in southern Australia. Journal of Applied Ecology 36:484493.CrossRefGoogle Scholar
BURNHAM, K. P. & ANDERSON, D. R. 1998. Model selection and inference: A practical information-theoretic approach. Springer-Verlag, New York. 353 pp.CrossRefGoogle Scholar
CHAMBERLAIN, M. J. & LEOPOLD, B. D. 2003. Effects of flooding on relative abundance and diversity of small mammals in a regenerating bottomland hardwood forest. The Southwestern Naturalist 48:306309.2.0.CO;2>CrossRefGoogle Scholar
CRESPIN, L. & LIMA, M. 2006. Supervivencia adulta y dinámica poblacional del lauchón orejudo Phyllotis darwini en Chile Central. Revista Chilena de Historia Natural 79:295308.CrossRefGoogle Scholar
CROXALL, J. P. & ROTHERY, P. 1991. Population regulation of seabirds: implications of their demography for conservation. Pp. 272295 in Perrins, C. M., Lebreton, J. -D. & Hirons, G. J. M. (eds.). Bird population studies: relevance to conservation and management. Oxford University Press, Oxford.CrossRefGoogle Scholar
DESY, E. A., BATZLI, G. O. & LIU, J. 1990. Effects of food and predation on behaviour of prairie voles: a field experiment. Oikos 58:159168.CrossRefGoogle Scholar
DUPLANTIER, J.-M. 1988. Biologie évolutive de populations du genre Mastomys (Rongeur, Muridé) au Sénégal. Unpublished thesis, University of Montpellier, 215 pp.Google Scholar
DUPLANTIER, J.-M. & , K. 2001. Swimming ability in six West-African rodent species under laboratory conditions. Pp 331342 in Denys, C., Granjon, L. & Poulet, A. (eds.). African small mammals. IRD Editions, Paris. 370 pp.Google Scholar
ERB, J., BOYCE, M. S. & STENSETH, N. C. 2001. Population dynamics of large and small mammals. Oikos 92:312.CrossRefGoogle Scholar
FOURNIER-CHAMBRILLON, C., FOURNIER, P., GAILLARD, J.-M., GENTY, P., HANSEN, E. & VIÉ, J.-C. 2000. Mammal trap efficiency during the fragmentation by flooding of a neotropical rain forest in French Guiana. Journal of Tropical Ecology 16:841851.CrossRefGoogle Scholar
GIMENEZ, O., LEBRETON, J.-D. & CHOQUET, R. 2003. Parameter redundancy in multistate capture-recapture model. Biometrical Journal 45:704722.CrossRefGoogle Scholar
GRANJON, L. 1987. Evolution allopatrique chez les Muridés: mécanismes éco-éthologiques lies au syndrome d'insularité chez Mastomys et Rattus. Unpublished thesis, University of Montpellier, 163 pp.Google Scholar
GRANJON, L. & DUPLANTIER, J.-M. 1993. Social structure in synanthropic populations of a murid rodent Mastomys natalensis in Senegal. Acta Theriologica 38:3947.CrossRefGoogle Scholar
GRANJON, L., GANEM, G., BA, K. & DUPLANTIER, J.-M. 1994. Water physiology and population dynamics in insular populations of Mastomys huberti (Rodentia, Muridae). Polish Ecological Studies 20:343355.Google Scholar
GRANJON, L., COSSON, J.-F., QUESSEVEUR, E. & SICARD, B. 2005. Population dynamics of the multimammate rat Mastomys huberti in an annually flooded agricultural region in Central Mali. Journal of Mammalogy 86:9971008.CrossRefGoogle Scholar
GRATZ, N. 1997. The burden of rodent-borne diseases in Africa south of the Sahara. Belgian Journal Zoology (suppl.) 127:7184.Google Scholar
HAFERKORN, J. 1994. Population ecology of small mammals in a floodplain forest in the central part of the Elbe River. Polish Ecological Studies 20:187191.Google Scholar
HALVORSON, C. H. 1982. Rodent occurrence, habitat disturbance, and seed fall in a larch-fir forest. Ecology 63:423433.CrossRefGoogle Scholar
HAMMOND, E. L. & ANTHONY, R. G. 2006. Mark-recapture estimates of population parameters for selected species of small mammals. Journal of Mammalogy 87:618627.CrossRefGoogle Scholar
HOLMGREN, M., STAPP, P., DICKMAN, C. R., GRACIA, C., GRAHAM, S., GUTIÉRREZ, J. R., HICE, C., JAKSIC, F., KELT, D. A., LETNIC, M., LIMA, M., LÓPEZ, B. C., MESERVE, P. L., MILSTEAD, W. B., POLIS, G. A., PREVITALI, M. A., RICHTER, M., SABATÉ, S. & SAQUEO, F. A. 2006. Extreme climatic events shape arid and semi arid ecosystems. Frontiers in Ecology and Environment 4:8795.CrossRefGoogle Scholar
HUBERT, B. 1982. Dynamique des populations de deux espèces de Rongeurs du Sénégal; Mastomys erythroleucus et Taterillus gracilis. I. Etude démographique. Mammalia 46:137160.CrossRefGoogle Scholar
HUBERT, B. & ADAM, F. 1981. Cycle annuel du régime alimentaire des trois principales espèces de rongeurs (Rodentia; Gerbillidae et Muridae) de Bandia (Sénégal). Mammalia 45:120.CrossRefGoogle Scholar
HUBERT, B., ADAM, F. & POULET, A. 1978. Modeling of the population cycles of two rodents in Senegal. Bulletin of Carnegie Museum of Natural History 6:8891.Google Scholar
IMS, R. A. & ANDREASSEN, H. P. 2000. Spatial synchronization of vole population dynamics by predatory birds. Nature 408:194196.CrossRefGoogle ScholarPubMed
JACOB, J. 2003. The response of small mammal populations to flooding. Mammalian Biology 68:102111.CrossRefGoogle Scholar
JULLIARD, R., LEIRS, H., STENSETH, N. C., YOCCOZ, N. G., PREVOT-JULLIARD, A. C., VERHAGEN, R. & VERHEYEN, W. 1999. Survival-variation within and between functional categories of the African multimammate rat. Journal of Animal Ecology 68:550561.CrossRefGoogle Scholar
KARANTH, K. U. & NICHOLS, J. D. 1998. Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79:28522862.CrossRefGoogle Scholar
KENDALL, W. L., POLLOCK, K. H. & BROWNIE, C. 1995. A likelihood-based approach to capture-recapture estimation of demographic parameters under the robust design. Biometrics 51:293308.CrossRefGoogle ScholarPubMed
KLINGER, R. 2006. The interaction of disturbances and small mammal community dynamics in a lowland forest in Belize. Journal of Animal Ecology 75:12271238.CrossRefGoogle Scholar
KREBS, C. J. 1966. Demographic changes in fluctuating populations of Microtus californicus. Ecological Monographs 68:571594.Google Scholar
LEBRETON, J.-D., BURNHAM, K. P., CLOBERT, J. & ANDERSON, D. R. 1992. Modeling survival and testing biological hypotheses using marked animals, a unified approach with case studies. Ecological Monographs 62:67118.CrossRefGoogle Scholar
LEIRS, H. 1995. Population ecology of Mastomys natalensis Smith, 1834 – Implications for rodent control in Africa. Belgian Administration for Development Cooperation, Brussels. 268 pp.Google Scholar
LEIRS, H. 2003. Management of rodents in crops: the Pied Piper and his orchestra. Pp. 183190 in Singleton, G. R., Hinds, L. A., Krebs, C. J. & Spratt, D. M. (eds). Rats, mice and people: rodent biology and management. ACIAR, Canberra.Google Scholar
LEIRS, H. in press. Genus Mastomys. Pp. in Happold, D. C. D. (ed.). Mammals of Africa, Volume 4: Rodentia. Academic Press, London.Google Scholar
LEIRS, H., VERHAGEN, R. & VERHEYEN, W. 1994. The basis of reproductive seasonality in Mastomys rats (Rodentia: Muridae) in Tanzania. Journal of Tropical Ecology 10:5566.CrossRefGoogle Scholar
LEIRS, H, STENSETH, N. C., NICHOLS, J. D., HINES, J. E., VERHAGEN, R. & VERHEYEN, W. 1997. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent. Nature 389:176180.CrossRefGoogle Scholar
LIMA, M., JULLIARD, R., STENSETH, N. C. & JAKSIC, F. 2001. Demographic dynamics of a neotropical small rodent (Phyllotis darwini): feedback structure, predation and climatic factors. Journal of Animal Ecology 70:761775.CrossRefGoogle Scholar
LIMA, M., STENSETH, N. C., LEIRS, H. & JAKSIC, F. M. 2003. Population dynamics of small mammals in semi-arid regions: a comparative study of within-year demographic variability in two rodent species. Proceedings of the Royal Society, series B 270:19972007.CrossRefGoogle Scholar
MADSEN, T., UJVARI, B., SHINE, R. & OLSSON, M. 2006. Rain, rats and pythons: climate-driven population dynamics of predators and preys in tropical Australia. Austral Ecology 31:3037.CrossRefGoogle Scholar
MENKINS, G. E. & ANDERSON, S. H. 1988. Estimation of small-mammal population size. Ecology 69:19521959.CrossRefGoogle Scholar
MESERVE, P. L., MILSTEAD, W. B. & GUTIÉRREZ, J. R. 2001. Results of a food addition experiment in a north-central Chile small mammal assemblage: evidence for the role of “bottom-up” factors. Oikos 94:548556.CrossRefGoogle Scholar
NICHOLS, J. D., HINES, J. E., LEBRETON, J.-D. & PRADEL, R. 2000. The relative contributions of demographic components to population growth: a direct estimation approach based on reverse-time capture-recapture. Ecology 81:33623376.Google Scholar
OSTFELD, R. S. & CANHAM, C. D. 1995. Density-dependent processes in meadow voles: an experimental approach. Ecology 76:521532.CrossRefGoogle Scholar
POLLOCK, K. H. 1982. A capture-recapture sampling design robust to unequal catchability. Journal of Wildlife Management 46:752757.CrossRefGoogle Scholar
PRADEL, R. 1993. Flexibility in survival analysis from recapture data, handling trap-dependence. Pp. 2937 in Lebreton, J. D. & North, P. M. (eds.). Marked individuals in the study of bird population. Birkhäuser Verlag, Basel. 397 pp.Google Scholar
PRADEL, R., GIMENEZ, O. & LEBRETON, J.-D. 2005. Principles and interest of GOF tests for multistate capture-recapture models. Animal Biodiversity and Conservation 28:189204.CrossRefGoogle Scholar
PRÉVÔT-JULLIARD, A.-C., HENTTONEN, H., YOCCOZ, N. G. & STENSETH, N. C. 1999. Delayed maturation in female bank voles: optimal decision or social constraint? Journal of Animal Ecology 68:684697.CrossRefGoogle Scholar
SKALSKI, J. R., HOFFMANN, A. & SMITH, S. G. 1993. Testing the significance of individual- and cohort-level covariates in animal survival studies. Pp. 928 in Lebreton, J. D. & North, P. M. (eds.). Marked individuals in the study of bird population. Birkhäuser Verlag, Basel.Google Scholar
SLUYDTS, V., CRESPIN, L., DAVIS, S., LIMA, M. & LEIRS, H. 2007. Survival and maturation rates of the African rodent, Mastomys natalensis: density-dependence and rainfall. Integrative Zoology 2:220232.CrossRefGoogle ScholarPubMed
STENSETH, N. C. 1999. Population cycles in voles and lemmings: density-dependence and phase dependence in a stochastic world. Oikos 87:427461.CrossRefGoogle Scholar
TELFER, S., BENNETT, M., BOWN, K. J., CAVANAGH, R., CRESPIN, L., HAZEL, S., JONES, T. & BEGON, M. 2002. The effects of cowpox virus on survival in natural rodent populations: increases and decreases. Journal of Animal Ecology 71:558568.CrossRefGoogle Scholar
WHITE, G. C. & BURNHAM, K. P. 1999. Program MARK, survival estimation from populations of marked animals. Bird Study 46:120139.CrossRefGoogle Scholar
YUNGER, J. A. 2002. Response of two low-density populations of Peromyscus leucopus to increased food availability. Journal of Mammalogy 83:267279.2.0.CO;2>CrossRefGoogle Scholar
ZHANG, M., WANG, K., WANG, Y., GUO, C., LI, B. & HUANG, H. 2007. Recovery of a rodent community in an agro-system after flooding. Journal of Zoology 272:138147.CrossRefGoogle Scholar