Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T19:07:59.091Z Has data issue: false hasContentIssue false

The δ15N signature of the detrital food web tracks a landscape-scale soil phosphorus gradient in a Costa Rican lowland tropical rain forest

Published online by Cambridge University Press:  01 June 2012

Ching-Yu Huang*
Affiliation:
Department of Biology, California State University Dominguez Hills, Carson, CA 90747USA
Katherine L. Tully
Affiliation:
Department of Environmental Sciences, University of Virginia, Clark Hall, PO Box 400123, Charlottesville, VA 22904, USA
Deborah A. Clark
Affiliation:
Department of Biology, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
Steven F. Oberbauer
Affiliation:
Department of Biological Sciences, Florida International University, Miami FL 33199, USA and Fairchild Tropical Botanic Garden, 11935 Old Cutler Road, Miami, FL 33156, USA
Terrence P. McGlynn
Affiliation:
Department of Biology, California State University Dominguez Hills, Carson, CA 90747USA
*
1Corresponding author. Email: [email protected]

Abstract:

In this study, we investigated whether landscape-scale variation of soil P accounts for 13C and 15N composition of detrital invertebrates in a lowland tropical rain forest in Costa Rica. The top 10-cm soil, leaf-litter samples and plant foliage were collected among 18 plots representing a three-fold soil P gradient during 2007–2009. Body tissue of litter invertebrates (extracted from leaf-litter samples) along with soil, leaf litter and green foliage were analysed for total C, total N, δ13C and δ15N values. Differences in δ13C and δ15N signatures across plots and relative trophic distances of detrital food webs (Δ δ15N), and their variation with soil P gradient were evaluated. We found soil P gradient had a significantly positive correlation with δ15N of Asterogyne martiana foliage, leaf litter, collembolans and oribatid mites. The δ15N of the collembolans and pseudoscorpions positively correlated to leaf-litter δ15N. Δ δ15N between the trophic levels remained consistent across the soil P gradient. Higher δ15N in the collembolans and oribatid mites might be derived from their consumption on 15N-enriched decayed debris or fungal hyphae growing on it. It suggests that fine-scale soil P variation can affect trophic dynamics of detrital arthropods via regulation of microbial community and nutrient dynamics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ADAMS, T. S. & STERNER, R. W. 2000. The effect of dietary nitrogen content on trophic level 15N enrichment. Limnology and Oceanography 45:601607.CrossRefGoogle Scholar
ALBERS, D., SCHAEFER, M. & SCHEU, S. 2006. Incorporation of plant carbon into the soil animal food web of an arable system. Ecology 87:235245.CrossRefGoogle ScholarPubMed
BEARE, M. H., PARMELEE, R. W., HENDRIX, P. F., CHENG, W., COLEMAN, D. C. & CROSSLEY, D. A. 1992. Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecological Monographs 62:569591.Google Scholar
BESTELMEYER, B. T., AGOSTI, D., ALONSO, L. E., BRANDÃ, C. R. F., BROWN, W. L., DELABIE, J. H. C. & SILVESTRE, R. 2000. Field techniques for the study of ground-dwelling ants: an overview, description and evaluation. Pp. 122144 in Agosti, D., Majer, J., Alonso, L. E. & Schultz, T. (eds.). Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington DC.Google Scholar
CLARK, D. B. & CLARK, D. A. 2000. Landscape-scale variation in forest structure and biomass in a tropical rain forest. Forest Ecology and Management 137:185198.CrossRefGoogle Scholar
CLARK, D. B., PALMER, M. W. & CLARK, D. A. 1999. Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80:26622675.CrossRefGoogle Scholar
CLARKSON, B. R., SCHIPPER, L. A., MOYERSOEN, B. & SILVESTER, W. B. 2005. Foliar 15N natural abundance indicates phosphorus limitation of bog species. Oecologia 144:550557.Google Scholar
CLEVELAND, C. C., NEFF, J. C., TOWNSEND, A. R. & HOOD, E. 2004. Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystem 7:275285.CrossRefGoogle Scholar
CLEVELAND, C. C., TOWNSEND, A. R., TAYLOR, P., ALVAREZ-CLARE, S., BUSTAMANTE, M. M. C., CHUYONG, G., DOBROWSKI, S. Z., GRIERSON, P., HARMS, K. E., HOULTON, B. Z., MARKLEIN, A., PARTON, W., PORDER, S., REED, S. C., SIERRA, C. A., SILVER, W. L., TANNER, E. V. J. & WIEDER, W. R. 2011. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecology Letters 14:939947.CrossRefGoogle ScholarPubMed
DAVIDSON, D. W., COOK, S. C., SNELLING, R. R. & CHUA, T. H. 2003. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969972.Google Scholar
DENIRO, M. J. & EPSTEIN, S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42:495506.CrossRefGoogle Scholar
DENIRO, M. J. & EPSTEIN, S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45:341351.Google Scholar
ESPELETA, J. F. & CLARK, D. A. 2007. Multi-scale variation in fine-root biomass in a tropical rain forest: a seven-year study. Ecological Monographs 77:377404.CrossRefGoogle Scholar
FISHER, B. L. 1999. Improving inventory efficiency: a case study of leaf-litter ant diversity in Madagascar. Ecological Applications 9:714731.CrossRefGoogle Scholar
GONZÁLEZ, G. & SEASTEDT, T. R. 2001. Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology 82:955964.CrossRefGoogle Scholar
HENEGHAN, L., COLEMAN, D. C., ZOU, X., CROSSLEY, D. A. & HAINES, B. L. 1999. Soil microarthropod contributions to decomposition dynamics: tropical–temperate comparisons of a single substrate. Ecology 80:18731882.Google Scholar
HÄTTENSCHWILER, S. & JØRGENSEN, H. B. 2010. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology 98:754763.Google Scholar
HAUBERT, D., LANGEL, R., SCHEU, S. & RUESS, L. 2005. Effects of food quality, starvation and life stage on stable isotope fractionation in Collembola. Pedobiologia 49:229237.CrossRefGoogle Scholar
HIDAKA, A. & KITAYAMA, K. 2011. Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu, Borneo. Journal of Ecology 99:849857.CrossRefGoogle Scholar
HOBBIE, E. A., MACKO, S. A. & SHUGART, H. H. 1999. Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118:353360.CrossRefGoogle ScholarPubMed
HYODO, F., MATSUMOTO, T., TAKEMATSU, Y., KAMOI, T., FUKUDA, D., NAKAGAWA, M. & ITIOKA, T. 2010. The structure of a food web in a tropical rain forest in Malaysia based on carbon and nitrogen stable isotope ratios. Journal of Tropical Ecology 26:205214.Google Scholar
JENNINGS, S., RENONES, O., MORALES-NIN, B., POLUNIN, N. V. C., MORANTA, J. & COLL, J. 1997. Spatial variation in the 15N and 13C stable isotope composition of plants, invertebrates and fishes on Mediterranean reefs: implications for the study of trophic pathways. Marine Ecology Progress Series 146:109116.Google Scholar
KASPARI, M., GARCIA, M. N., HARMS, K. E., SANTANA, M., WRIGHT, S. J. & YAVITT, J. B. 2008. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters 11:3543.CrossRefGoogle Scholar
KLEBER, M., SCHWENDENMANN, L., VELDKAMP, E., ROBNER, J. & JAHN, R. 2007. Halloysite versus gibbsite: silicon cycling as a pedogenetic process in two lowland neotropical rain forest soils of La Selva, Costa Rica. Geoderma 138:111.CrossRefGoogle Scholar
MCCUTCHAN, J. H. J., LEWIS, W. M. J., KENDALL, C. & MCGRATH, C. C. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378390.Google Scholar
MCDADE, L. A., BAWA, K. S., HESPENHEIDE, H. A. & HARTSHORN, G. S. 1994. La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago. 493 pp.Google Scholar
MCGLYNN, T. P., DUNN, R. R., WOOD, T. E., LAWRENCE, D. & CLARK, D. A. 2007. Phosphorus limits tropical rain forest litter fauna. Biotropica 39:5053.CrossRefGoogle Scholar
MCGLYNN, T. P., CHOI, H. K., MATTINGLY, S. T., UPSHAW, S., POIRSON, E. K. & BETZELBERGER, J. 2009. Spurious and functional correlates of the isotopic composition of a generalist across a tropical rainforest landscape. BMC Ecology 9:2329.Google Scholar
MCKEE, K. L., FELLER, I. C., POPP, M. & WANEK, W. 2002. Mangrove isotopic (δ15N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient. Ecology 84:10651075.Google Scholar
MCNABB, D. M., HALAJ, J. & WISE, D. H. 2001. Inferring trophic positions of generalist predators and their linkage to the detrital food web in agroecosystems: a stable isotope analysis. Pedobiologia 45:289297.CrossRefGoogle Scholar
MELILLO, J. M., ABER, J. D., LINKINS, A. E., RICCA, A., FRY, B. & NADELHOFFER, K. J. 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant and Soil 115:189198.Google Scholar
MINAGAWA, M. & WADA, E. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between delta 15N and animal age. Geochimica et Cosmochimica Acta 48:11351140.Google Scholar
NADELHOFFER, K. J. & FRY, B. 1988. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Science Society of American Journal 52:16331640.Google Scholar
POLLIERER, M. M., LANGEL, R., KORNER, C., MARAUN, M. & SCHEU, S. 2007. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecology Letters 10:729736.Google Scholar
POLLIERER, M. M., LANGEL, R., SCHEU, S. & MARAUN, M. 2009. Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). Soil Biology and Biochemistry 41:12211226.CrossRefGoogle Scholar
PONSARD, S. & ARDITI, R. 2000. What can stable isotopes (15N and 13C) tell about the food web of soil macro-invertebrates? Ecology 81:852864.Google Scholar
POST, D. M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703718.CrossRefGoogle Scholar
POWERS, J. S., MONTGOMERY, R. A., ADAIR, E. C., BREARLEY, F. Q., DEWALT, S. J., CASTANHO, C. T., CHAVE, J., DEINERT, E., GANZHORN, J. U., GILBERT, M. E., GONZÁLEZ-ITURBE, J. A., BUNYAVEJCHEWIN, S., GRAU, H. R., HARMS, K. E., HIREMATH, A., IRIARTE-VIVAR, S., MANZANE, E., DE OLIVERIRA, A. A., POORTER, L., RAMANAMANJATO, J.-B., SALK, C., VARELA, A., WEIBLEN, G. D. & LERDAU, M. T. 2009. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology 97:801811.CrossRefGoogle Scholar
ROBBINS, C. T., FELICETTI, L. A. & SPONDEIMER, M. 2005. The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia 144:534540.CrossRefGoogle ScholarPubMed
RUF, A., KUZYAKOV, Y. & LOPATOVSKAYA, O. 2006. Carbon fluxes in soil food webs of increasing complexity revealed by 14C labelling and 13C natural abundance. Soil Biology and Biochemistry 38:23902400.Google Scholar
SANFORD, R. L., PAABY, P., LUVALL, J. C. & PHILLIPS, E. 1994. The La Selva ecosystem: climate, geomorphology, and aquatic systems. Pp. 1933 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds.). La Selva: Ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago.Google Scholar
SCHEU, S. & FALCA, M. 2000. The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia 123:285296.CrossRefGoogle Scholar
SCHMIDT, O., CURRY, J. P., DYCKMANS, J., ROTA, E. & SCRIMGEOUR, C. M. 2004. Dual stable isotope analysis (δ13C and δ15N) of soil invertebrates and their food sources. Pedobiologia 48:171180.Google Scholar
SCHNEIDER, K., MIGGE, S., NORTON, R. A., SCHEU, S., LANGEL, R., REINEKING, A. & MARAUN, M. 2004. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biology and Biochemistry 36:17691774.Google Scholar
SCHWENDENMANN, L., VELDKAMP, E., BRENES, T., O'BRIEN, J. J. & MACKENSEN, J. 2003. Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica. Biogeochemistry 64:111128.Google Scholar
SOLLINS, P., SANCHO, M. F., MATA, C. R. & SANFORD, R. L. 1994. Soils and soil process research. Pp. 3453 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds.). La Selva: Ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago.Google Scholar
STERNER, R. W. & ELSER, J. J. 2002. Ecological stoichiometry. Princeton University Press, Princeton. 584 pp.Google Scholar
THOMAS, C. J. & CAHOON, L. B. 1993. Stable isotope analyses differentiate between different trophic pathways supporting rocky-reef fishes. Marine Ecology Progress Series 95:1924.Google Scholar
TIUNOV, A. V. 2007. Stable isotopes of carbon and nitrogen in soil ecological studies. Biology Bulletin 34:395407.CrossRefGoogle Scholar
TOWNSEND, A. R., CLEVELAND, C. C., HOULTON, B. Z., ALDEN, C. B. & WHITE, J. W. C. 2011. Multi-element regulation of the tropical forest carbon cycle. Frontiers in Ecology and the Environment 9:917.Google Scholar
WEBB, S. C., HEDGEES, R. E. M. & SIMPSON, S. J. 1998. Diet quality influences the delta13C and delta15N of locusts and their biochemical components. Journal of Experimental Biology 210:29032911.CrossRefGoogle Scholar