Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T07:25:31.527Z Has data issue: false hasContentIssue false

The nomographic estimation of the influence of substandard mortality on the policy value

Published online by Cambridge University Press:  11 August 2014

G. Wünsche*
Affiliation:
Munich
Get access

Extract

In this article we are concerned with the problem of interpreting numerically the relative variations which the policy value based on a standard mortality table undergoes when this table is replaced by one which allows for 100T% extra mortality.

This question is of particular interest from two points of view. First, it is of consequence for the technique of insurance of abnormal risks to obtain some idea of the numerical effect of percentage additions to the mortality on such important lifecontingency functions as surrender values. Further, in the treatment of this question as a typical approximation problem of lifecontingency mathematics, it appears that the solution most suited to the essence of the inquiry and for practical applications is obtained by a nomographic evaluation of the quantities under consideration. As regards the importance of nomography in the practical application of insurance mathematics the author has already made a thorough exposition and given examples in a series of earlier publications; in future, in life-contingency problems, the necessary consideration will always be given to the development of the appropriate nomographic methods, particularly in connexion with the introduction of typical approximate methods.

Type
Research Article
Copyright
Copyright © Institute of Actuaries Students' Society 1949

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LIST OF THE AUTHOR'S PREVIOUS ARTICLES ON NOMOGRAPHY APPLIED TO INSURANCE MATHEMATICS

(1934) Über die Geometrie der Invaliditätsversicherung. Diss. Tech. Hochsch. Dresden.Google Scholar
(1936) Die graphische Methode in der Mathematik der Invaliditätsversicherung. Bl. Versich.-Math. verw. Geb. III, 311.Google Scholar
(1937) Nomographie und Versicherungstechnik. Neumanns Z. Vers.-wesen, no. 20.Google Scholar
(1938) Eine nomographische Behandlung des Zinsfussproblems in der Lebensversicherung. Arch. math. Wirtsch.-Sozialfarsch. IV, 191.Google Scholar
(1938) Grundzüge einer allgemeinen nomographischen Methode der Versicherungsmathematik. Bl. Versich.-Math. verw. Geb. IV, 209.Google Scholar
Nagler, H. (1938) Rückkaufswert und eingezahlte Beiträge. Neumanns Z. Vers.-wesen, no. 38.Google Scholar
(1938) (with Schwerdt, H.) Nomogramm zur Ermittlung von Versicherungswerten. Mitt. Aussch. wirts. Fert. Reichskur. Wirtschaftl. xx.Google Scholar
(1939) Der Einfluss einer Herabsetzung des Rechnungszinsfusses auf die Deckungsrücklage in der Lebensversicherung. Mitt. Aussch. wirts. Fert. Reichskur. Wirtschaftl. XXI.Google Scholar

OTHER REFERENCES

Berger, A. (1939). Mathematik der Lebensversicherung. Vienna.Google Scholar
Schwerdt, H. (1924). Lehrbuch der Nomographie. Berlin.Google Scholar
Wünsche, G. (1939). Zur rechnerischen Erfassung der Übersterblichkeit in der Technik der Lebensversicherung. Neumanns Z. Vers.-wesen, no. 2.Google Scholar