Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T02:54:01.190Z Has data issue: false hasContentIssue false

What are the factors leading to the success of small planktonic copepods in the Gulf of Gabes, Tunisia?

Published online by Cambridge University Press:  14 January 2015

Thouraya Ben Ltaief
Affiliation:
Faculté des Sciences de Sfax, Département des Sciences de la Vie, Université de Sfax, Unité de Recherche UR/11ES72 Biodiversité et Ecosystèmes Aquatiques, Route Soukra Km 3.5 – BP 1171 – CP 3000 Sfax, Tunisie
Zaher Drira
Affiliation:
Faculté des Sciences de Sfax, Département des Sciences de la Vie, Université de Sfax, Unité de Recherche UR/11ES72 Biodiversité et Ecosystèmes Aquatiques, Route Soukra Km 3.5 – BP 1171 – CP 3000 Sfax, Tunisie
Imen Hannachi
Affiliation:
Faculté des Sciences de Sfax, Département des Sciences de la Vie, Université de Sfax, Unité de Recherche UR/11ES72 Biodiversité et Ecosystèmes Aquatiques, Route Soukra Km 3.5 – BP 1171 – CP 3000 Sfax, Tunisie
Malika Bel Hassen
Affiliation:
Institut National des Sciences et Technologie de la Mer, 2025 Salammbô Tunis, Tunisie
Asma Hamza
Affiliation:
Institut National des Sciences et Technologie de la Mer, Centre de Sfax–BP 1035 – CP 3018
Marc Pagano*
Affiliation:
Mediterranean Institute of Oceanography, Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, 13288 Marseille, France
Habib Ayadi
Affiliation:
Faculté des Sciences de Sfax, Département des Sciences de la Vie, Université de Sfax, Unité de Recherche UR/11ES72 Biodiversité et Ecosystèmes Aquatiques, Route Soukra Km 3.5 – BP 1171 – CP 3000 Sfax, Tunisie
*
Correspondence should be addressed to: M. Pagano, Mediterranean Institute of Oceanography, Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, 13288 Marseille, France email: [email protected]

Abstract

An oceanographic cruise conducted during June 2008 in the Gulf of Gabes revealed the existence of different water masses; the Modified Atlantic Waters (MAW) circulated in the upper 100 m in the offshore area, the Mixed Mediterranean Water (MMW) was confined to the inshore region and the Ionian Water (IW) was in deep offshore water. The thermal stratification was indicated by the vertical profiles of temperature generated from a coast-offshore section. Phosphorus limitation was induced by the thermal stratification as shown by the high N/P ratio. Heterotrophic and mixotrophic dinoflagellates were the major contributors to total phytoplankton biomass. Ciliates were less abundant and dominated by tintinnids. Small planktonic copepods (≤1.45 mm) contributed to 93.64% of total copepod abundance in the inshore area as a result of the high density of Oithona similis, Oithona nana, Clausocalanus furcatus and Euterpina acutifrons in this area characterized by warm and salty MMW. In fact, small copepods were significantly correlated to both temperature and salinity. Small copepod fraction prevailed also in the MAW contributing to 71.05% of total copepod abundance as a result of the dominance of O. nana and C. furcatus. Nonetheless, the large copepod Nannocalanus minor was more adapted to the deep IW where it contributed to 44.05% of total copepod abundance. Invasive species were encountered in the offshore region intruded by the Atlantic waters. The Atlantic copepods were scarce and less abundant reflecting the weakening of the Atlantic flow in the eastern basin of the Mediterranean.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abboud-Abi Saab, M. (2008) Tintinnids of the Lebanese coastal waters (Eastern Mediterranean). Lebanon: CNRS-Lebanon/UNEP/MAP/RAC/SPA.Google Scholar
Agawin, N.S.R., Duarte, C. and Agustí, S. (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography 45, 591600.Google Scholar
Alder, V.A. (1999) Tintinnoinea. In Boltovskoy, D. (ed.) South Atlantic zooplankton. Leiden: Backhuys Publishers, pp. 321384.Google Scholar
Ashjian, C.J. and Wishner, K.F. (1993) Temporal and spatial changes in body size and reproductive state of Nannocalanus minor (Copepoda) females across and along the Gulf Stream. Journal of Plankton Research 15, 6798.Google Scholar
Beaugrand, G. and Ibanez, F. (2004) Monitoring marine plankton ecosystems. II: Long-term changes in North Sea calanoid copepods in relation to hydro-climatic variability. Marine Ecology Progress Series 284, 3547.Google Scholar
Beaugrand, G., Ibanez, F., Lindley, J.A. and Reid, P.C. (2002) Diversity of calanoid copepods in the North Atlantic and adjacent seas: species associations and biogeography. Marine Ecology Progress Series 232, 179195.Google Scholar
Bel Hassen, M., Drira, Z., Hamza, A., Ayadi, H., Akrout, F. and Issaoui, H. (2008) Summer phytoplankton pigments and community composition related to water mass properties in the Gulf of Gabes. Estuarine Coastal and Shelf Science 77, 645656.CrossRefGoogle Scholar
Bel Hassen, M., Drira, Z., Hamza, A., Ayadi, H., Akrout, F., Messaoudi, S., Issaoui, H., Aleya, L. and Bouaïn, A. (2009) Phytoplankton dynamics related to water mass properties in the Gulf of Gabes: ecological implications. Estuarine Coastal and Shelf Science 75, 216226.Google Scholar
Ben Ismail, S., Sammari, C., Gasparini, G.P., Béranger, K., Brahim, M. and Aleya, L. (2012) Water masses exchanged through the Channel of Sicily: evidence for the presence of new water masses on the Tunisian side of the Channel. Deep-Sea Research (Part I, Oceanographic Research Papers) 63, 6581.CrossRefGoogle Scholar
Bonnet, D. and Frid, C. (2004) Seven copepod species considered as indicators of water-mass influence and changes: results from a Northumberland coastal station. ICES Journal of Marine Science 61, 485491.Google Scholar
Bourrelly, P. (1985) Les Algues d'eau douce. Initiation à la systématique. Tome II. Les Algues bleues et rouges. Les Euglénins, Peridiniens et Cryptomonadines. Paris: Société Nouvelle des Editions Boubée.Google Scholar
Bradford-Grieve, J.M., Markhaseva, E.L., Rocha, C.E.F. and Abiahy, B. (1999) Copepoda. In Boltovsky, D. (ed.) South Atlantic zooplankton. Leiden: Backhuys Publishers, pp. 8691098.Google Scholar
Calbet, A. (2008) The trophic roles of microzooplankton in marine systems. ICES Journal of Marine Science 65, 325331.Google Scholar
Calbet, A., Landry, M.R. and Scheinberg, R.D. (2000) Copepod grazing in a subtropical bay: species-specific responses to a midsummer increase in nanoplankton standing stock. Marine Ecology–Progress Series 193, 7584.Google Scholar
Calbet, A. and Saiz, E. (2005) The ciliate-copepod link in marine ecosystems. Aquatic Microbial Ecology 38, 157167.Google Scholar
Commissariat Général des Pêches (1996) Annuaire des statistiques des pêches en Tunisie. Tunis: Ministère de l'agriculture.Google Scholar
Castellani, C., Irigoien, X., Mayor, D.J., Harris, R.P. and Wilson, D. (2008) Feeding of Calanus finmarchicus and Oithona similis on the microplankton assemblage in the Irminger Sea, North Atlantic. Journal of Plankton Research 30, 10951116.Google Scholar
Champalbert, G. (1996) Characteristics of zooplankton standing stock and communities in the Western Mediterranean Sea: relations to hydrology. Scientia Marina 60, 97113.Google Scholar
Daly Yahia, M.N., Souissi, S. and Daly Yahia Kefi, O. (2004) Spatial and temporal structure of planktonic copepods in the Bay of Tunis (southwestern Mediterranean Sea). Zoological Studies 43, 366375.Google Scholar
Dodge, J.D. (1985) Atlas of dinoflagellates. A scanning electron microscope survey. London: Farrand Press.Google Scholar
Drira, Z., Bel Hassen, M., Ayadi, H. and Aleya, L. (2014) What factors drive copepod community distribution in the Gulf of Gabes, Eastern Mediterranean Sea? Environmental Science and Pollution Research 4, 29182934.Google Scholar
Fernandez de Puelles, M.L., Gras, D. and Hernandez Leon, S. (2003) Annual cycle of zooplankton biomass, abundance and species composition in the neritic area of the Balearic Sea, Western Mediterranean. Marine Ecology Pubblicazioni Della Stazione Zoologica Di Napoli I 24, 123139.Google Scholar
Fragopoulu, N. and Lakkis, J. (1990) Vertical distribution and nocturnal migration of zooplankton in relation to the development of the seasonal thermocline in Patraikos Gulf. Marine Biology 104, 381387.Google Scholar
Furnestin, M.L. (1968) Le zooplancton de la Méditerranée (Bassin occidental). Essai de synthèse. Journal du Conseil/Conseil Permanent International pour l'Exploration de la Mer 32, 2569.CrossRefGoogle Scholar
Furnestin, M.L. (1979) Aspects of the zoogeography of the Mediteranean plankton. In van der Spoel, S. and Pierrot-Bults, A.C. (eds) Zoogeography and diversity of plankton. New York, NY: Halsted Press (Wiley), pp. 191253.Google Scholar
Gallienne, C.P. and Robins, D.B. (2001) Is Oithona the most important copepod in the world's oceans? Journal of Plankton Research 23, 14211432.Google Scholar
Gifford, D.J. and Dagg, M.J. (1988) Feeding of the estuarine copepod Acartia tonsa Dana carnivory vs herbivory in natural microplankton assemblages. Bulletin of Marine Science 43, 458468.Google Scholar
Gifford, D.J. and Dagg, M.J. (1991) The microzooplankton-mesozooplankton link: consumption of planktonic protozoa by the calanoid copepods Acartia tonsa Dana and Neocalanus plumchrus Murukawa. Aquatic Microbial Ecology 5, 161177.Google Scholar
Gómez, F. and Gorsky, G. (2003) Annual microplankton cycles in Villefranche Bay, Ligurian Sea, NW Mediterranean. Journal of Plankton Research 25, 323339.Google Scholar
Graneli, E. and Turner, J.T. (2002) Top-down regulation in ctenophore-copepod-ciliate-diatom-phytoflagellate communities in coastal waters: a mesocosm study. Marine Ecology Progress Series 239, 5768.Google Scholar
Hafferssas, A. and Seridji, R. (2010) Relationships between the hydrodynamics and changes in copepod structure on the Algerian coast. Zoological Studies 49, 353366.Google Scholar
Hannachi, I., Drira, Z., Belhassen, M., Hamza, A., Ayadi, H. and Bouain, A. (2008) Abundance and biomass of the ciliate community during a spring cruise in the Gulf of Gabès. Acta Protozoologica 47, 293305.Google Scholar
Hattour, M.J., Sammari, C. and Ben Nassrallah, S. (2010) Hydrodynamics of the Gulf of Gabes deduced from the observations of currents and water levels. Revue Paralia, 3, 112.Google Scholar
Hsieh, C.H., Chiu, T.S. and Shih, C.T. (2004) Copepod diversity and composition as indicators of intrusion of the Kuroshio Branch Current into the northern Taiwan Strait in spring 2000. Zoological Studies 43, 393403.Google Scholar
Huys, R. and Boxshall, G.A. (1991) Copepod evolution. Royal Society Publication 159, 1468.Google Scholar
Jamet, J.-L., Bogé, G., Richard, S., Geneys, C. and Jamet, D. (2001) The zooplankton community in bays of Toulon area (northwest Mediterranean Sea, France). Hydrobiologia 457, 155165.Google Scholar
Jamet, J.L., Jean, N., Bogé, G., Richard, S. and Jamet, D. (2005) Plankton succession and assemblage structure in two neighbouring littoral ecosystems in the north-west Mediterranean Sea. Marine and Freshwater Research 56 (1), 6983.Google Scholar
Jeong, H.J., Yoo, Y.D., Kim, J.S., Seong, K.A., Kang, N.S. and Kim, T.H. (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Science Journal 45, 6591.Google Scholar
Kiorboe, T. (2011) What makes pelagic copepods so successful? Journal of Plankton Research 33, 677685.Google Scholar
Landry, M.R., Lehner Fournier, J.M. and Fagerness, V.L. (1985) Predatory feeding behavior of the marine cyclopoid copepod Corycaeus anglicus . Marine Biology 85, 163169.Google Scholar
Lasternas, S., Tunin-Ley, A., Ibanez, F., Andersen, V., Pizay, M.D. and Lemée, R. (2011) Short-term dynamics of microplankton abundance and diversity in NW Mediterranean Sea during late summer conditions (DYNAPROC 2 cruise; 2004). Biogeosciences, 8, 743761.CrossRefGoogle Scholar
Mazzocchi, M.G. and Paffenhöfer, G.A. (1998) First observations on the biology of Clausocalanus furcatus (Copepoda, Calanoida). Journal of Plankton Research 20, 331342.Google Scholar
Mazzocchi, M.G. and Ribera d'Alcala, M. (1995) Recurrent patterns in zooplankton structure and succession in a variable coastal environment. ICES Journal of Marine Science 52, 679691.Google Scholar
Menden-Deuer, S. and Lessard, E.J. (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45, 569579.Google Scholar
Nakamura, Y. and Turner, J.T. (1997) Predation and respiration by the small cyclopoid copepod Oithona similis: how important is feeding on ciliates and heterotrophic flagellates? Journal of Plankton Research 19, 12751288.Google Scholar
Nowaczyk, A., Carlotti, F., Thibault-Botha, D. and Pagano, M. (2011) Distribution of epipelagic metazooplankton across the Mediterranean Sea during the summer BOUM cruise. Biogeosciences 8, 21592177.Google Scholar
Paffenhöfer, G.A. (1998) Heterotrophic protozoa and small metazoa: feeding rates and prey-consumer interactions. Journal of Plankton Research 20, 121133.CrossRefGoogle Scholar
Paffenhöfer, G.A. and Mazzocchi, M.G. (2003) Vertical distribution of subtropical epiplanktonic copepods. Journal of Plankton Research 25, 11391156.CrossRefGoogle Scholar
Peralba, A. and Mazzocchi, M.G. (2004) Vertical and seasonal distribution of eight Clausocalanus species (Copepoda: Calanoida) in oligotrophic waters. ICES Journal of Marine Science 61, 645653.Google Scholar
Poulain, P. and Zambianchi, E. (2007) Near surface circulation in the central Mediterranean Sea as deduced from Lagrangian drifters in the 1990s. Continental Shelf Research 27, 9811001.Google Scholar
Putt, M. and Stoecker, D.K. (1989) An experimentally determined carbon:volume ratio for marine oligotrichous ciliates from estuarine and coastal waters. Limnology and Oceanography 34, 10971104.Google Scholar
Rekik, A., Drira, Z., Guermazi, W., Elloumi, J., Maalej, S., Aleya, L. and Ayadi, H. (2012) Impacts of an uncontrolled phosphogypsum dumpsite on summer distribution of phytoplankton, copepods and ciliates in relation to abiotic variables along the near-shore of the southwestern Mediterranean coast. Marine Pollution Bulletin 64, 336346.Google Scholar
Ribera d'alcală, M., Conversano, F., Corato, F., Licandro, P., Mangoni, O., Marino, D., Mazzocchi, M.G., Modigh, M., Montresor, M., Nardella, M., Saggiomo, V., Sarno, D. and Zingone, A. (2004) Seasonal patterns in plankton communities in a pluriannual time series at an inshore Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. Scientia Marina 68, 6583.Google Scholar
Richardson, A.J. (2008) In hot water: zooplankton and climate change. ICES Journal of Marine Science 65, 279295.Google Scholar
Roff, J.C., Turner, J.T., Webber, M.K. and Hopcroft, R.R. (1995) Bacterivory by tropical copepod nauplii: extent and possible significance. Aquatic Microbial Ecology 9, 165175.Google Scholar
Rose, M. (1933) Copépode pélagiques. In Faune de France 26. Paris: Office Central de Faunistique, pp. 372.Google Scholar
Ross, O.N. and Sharples, J. (2007) Phytoplankton motility and the competition for nutrients in the thermocline. Marine Ecology Progress Series 347, 2138.Google Scholar
Saint Jean, L. and Pagano, M. (1995) Egg mortality through predation in egg-carrying zooplankters. Studies on Heterobranchus longifilis larvae fed on copepods, cladocerans and rotifers. Journal of Plankton Research 17, 15011512.Google Scholar
Sammari, C., Koutitonsky, V.G. and Moussa, M. (2006) Sea level variability and tidal resonance in the Gulf of Gabes, Tunisia. Continental Shelf Research 26, 338350.Google Scholar
Sammari, C., Millot, C., Taupier-Letage, I., Stefani, A. and Brahim, M. (1999) Hydrological characteristics in the Tunisia–Sardinia–Sicily area during spring 1995. Deep-Sea Research (Part I, Oceanographic Research Papers) 46, 16711703.Google Scholar
Satapoomin, S., Nielsen, T.G. and Hansen, P.J. (2004) Andaman Sea copepods: spatio-temporal variations in biomass and production, and role in the pelagic food web. Marine Ecology Progress Series 274, 99122.Google Scholar
Shannon, C.E. and Weaver, G. (1949) The mathematical theory of communication. Urbana, IL: University of Illinois Press.Google Scholar
Sherr, E.B. and Sherr, B.F. (2007) Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Marine Ecology Progress Series 352, 187197.Google Scholar
Siokou-Frangou, I., Bianchi, M., Christaki, U., Christou, E.D., Giannakourou, A., Gotsis, O., Ignatiades, L., Pagou, K., Pitta, P., Psarra, S., Souvermezoglou, E., Van Wambeke, F. and Zervakis, V. (2002) Carbon flow in the planktonic food web along a gradient of oligotrophy in Aegean Sea (Mediterranean Sea). Journal of Marine Systems 33, 335353.Google Scholar
Siokou-Frangou, I., Christou, E.D., Fragopoulu, N. and Mazzocchi, M.G. (1997) Mesozooplankton distribution from Sicily to Cyprus (Eastern Mediterranean) .1. General aspects – .2. Copepod assemblages. Oceanologica Acta 20, 537548.Google Scholar
Siokou-Frangou, I., Papathanassiou, E., Lepretre, A. and Frontier, S. (1998) Zooplankton assemblages and influence of environmental parameters on them in a Mediterranean coastal area. Journal of Plankton Research 20, 847870.Google Scholar
Strüder-Kypke, M.C. and Montagnes, D.J.S. (2002) Development of web based guides to planktonic protists. Aquatic Microbial Ecology 27, 203207.Google Scholar
Suzuki, K., Nakamura, Y. and Hiromi, J. (1999) Feeding by the small calanoid copepod Paracalanus sp. on heterotrophic dinoflagellates and ciliates. Aquatic Microbial Ecology 17, 99103.Google Scholar
Tiselius, P., Saiz, E. and Kiørboe, T. (2013) Sensory capabilities and food capture of two small copepods, Paracalanus parvus and Pseudocalanus sp. Limnology and Oceanography 58, 16571666.Google Scholar
Tomas, C.R. (1996) Identifying marine phytoplankton. San Diego, CA: Academic Press.Google Scholar
Tregouboff, G. and Rose, M. (1957) Manuel de planctonologie méditerranéenne. Paris: Centre National de la Recherche Scientifique, vol. 1, 587 pp.; vol. 2, 207 pls.Google Scholar
Turner, J.T. (1991) Zooplankton feeding ecology: do co-occurring copepods compete for the same food? Reviews in Aquatic Sciences 5, 101195.Google Scholar
Turner, J.T. (2000) Feeding ecology of marine copepods: an overview of recent studies and emerging issues. Proceedings of the International Symposium on Marine Biology in Taiwan- Crustacean and Zooplankton Taxonomy, Ecology and Living Resources, 26–27 May 1998. National Taiwan Museum Special Publication Series 10, 3757.Google Scholar
Turner, J.T. (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zoological Studies 43, 255266.Google Scholar
Turner, J.T., Levinsen, H., Nielsen, T.G. and Hansen, B.W. (2001) Zooplankton feeding ecology: grazing on phytoplankton and predation on protozoans by copepod and barnacle nauplii in Disko Bay, West Greenland. Marine Ecology Progress Series 221, 209219.Google Scholar
Uysal, Z. and Shmeleva, A.A. (2012) Species composition, abundance and biomass of copepoda in plankton of the Northern Levatine basin (Eastern Mediterranean Sea). Crustaceana 85, 909935.Google Scholar
Vidjak, O., Bojanic, N., Kuspilic, G., Gladan, Z.N. and Ticina, V. (2007) Zooplankton community and hydrographical properties of the Neretva channel (eastern Adriatic Sea). Helgoland Marine Research 61, 267282.Google Scholar
Williams, J.A. and Muxagata, E. (2006) The seasonal abundance and production of Oithona nana (Copepoda : Cyclopoida) in Southampton Water. Journal of Plankton Research 28, 10551065.Google Scholar
Zervoudaki, S., Christou, E.D., Nielsen, T.G., Siokou Frangou, I., Assimakopoulou, G., Giannakourou, A., Maar, M., Pagou, K., Krasakopoulou, E., Christaki, U. and Moraitou Apostolopoulou, M. (2007) The importance of small-sized copepods in a frontal area of the Aegean Sea. Journal of Plankton Research 29, 317338.Google Scholar