Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T14:18:49.343Z Has data issue: false hasContentIssue false

Vitamin B12 and Marine Ecology III. An experiment with a chemostat

Published online by Cambridge University Press:  11 May 2009

M. R. Droop
Affiliation:
The Marine Station, Millport, Scotland

Extract

A 250 ml. chemostat has been used to measure the parameters of vitamin B requirement in the chrysomonad Monochrysis lutheri.

The yield constant was ca. 0·25 × 10 cells/μμg., i.e. one-third of the figure previously measured in batch cultures.

The saturation constant lay between 2 and 6 μμ/ml., i.e. at least twenty times the figure indicated by previous batch culture measurements.

Internal inconsistencies in the chemostat's operation indicate the presence of factors not accounted for by theory.

It is argued that only factors analogous to the release of protein-bound vitamin into the medium could in principle account for all the discrepancies.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adair Wood, E. 1962. Doctoral thesis, Bingham Oceanographic Laboratory, Yale.Google Scholar
Daisley, K. W. 1961. Gel filtration of sea water: separation of free and bound forms of vitamin B12. Nature, Lond., Vol. 191, pp. 868–9.CrossRefGoogle Scholar
Droop, M. R. 1957. Vitamin B12 and marine ecology. Nature, Lond., Vol. 180, pp. 1041–2.CrossRefGoogle Scholar
Droop, M. R. 1958. Requirement for thiamine among some marine and supra-littoral protista. J. mar. biol. Ass. U.K., Vol. 37, pp. 23–9.CrossRefGoogle Scholar
Droop, M. R. 1961. Vitamin B12 and marine ecology: the response of Monochrysis lutheri. J. mar. biol. Ass. U.K., Vol. 41, pp. 6976.CrossRefGoogle Scholar
Droop, M. R. 1962. Organic micronutrients. In Biochemistry and Physiology of Algae, pp. 141–59. Ed. R. A. Lewin. New York: Academic Press.Google Scholar
Eppley, R. W. & Dyer, D. L. 1965. Predicting production in light-limited continuous cultures of algae. Appl. Microbiol., Vol. 13, pp. 833–7.CrossRefGoogle ScholarPubMed
Ford, J. E. 1958. B12 vitamins and growth of the flagellateOchromonas malhamensis. J. gen. Microbiol., Vol. 19, pp. 161–72.Google Scholar
Ford, J. E.Gregory, M. E. & Holdsworth, E. S. 1955. Uptake of B12 vitamins in Ochromonas malhamensis. Biochem. J., Vol. 61, p. xxiii.Google Scholar
Guillard, R. R. L. & Cassie, V. 1963. Minimum cyanocobalamin requirements of some marine centric diatoms. Limnol. Oceanogr., Vol. 8, pp. 161–5.CrossRefGoogle Scholar
Herbert, D.Elsworth, R. & Telling, R. C. 1956. The continuous culture of bacteria; a theoretical and experimental study. J. gen. Microbiol., Vol. 14, pp. 601–22.CrossRefGoogle ScholarPubMed
Hinshelwood, C. N. 1946. The Chemical Kinetics of the Bacterial Cell, 284 pp. Oxford: Clarendon Press.Google Scholar
Kakei, M. & Glass, G. P. J. 1962. Separation of bound and free vitamin B12 on Sephadex G 25 column. Proc. Soc. exp. Biol. Med., vol III, pp. 270–4.Google Scholar
Latner, A. L. 1955. Intrinsic factor. Biochem. Soc. Symp., Vol. 13, pp. 6991.Google Scholar
Maddux, W. S. & Jones, R. F. 1964. Some interactions of temperature, light intensity, and nutrient concentration during the continuous culture of Nitzschia closterium andTetraselmis sp. Limnol. Oceanogr., Vol. 9, pp. 7986.Google Scholar
Menzel, D. W. & Spaeth, J. P. 1962. Occurrence of vitamin B12 in the Sargasso Sea. Limnol. Oceanogr., Vol. 7, pp. 151–8.CrossRefGoogle Scholar
Monod, J. 1942. Recherches sur la Croissance des Cultures Bacteriennes, 210 pp. Paris: Hermann et Cie.Google Scholar
Monod, J. 1950. La technique de culture continue; théorie et applications. Annls Inst. Pasteur, Paris, Vol. 79, pp. 390410.Google Scholar
Novick, A. & Szilard, L. 1950. Experiments with the chemostat on spontaneous mutations of bacteria. Proc. nat. Acad. Sci., Wash., Vol. 36, pp. 708–19.Google Scholar
Phillips, J. N. & Myers, J. 1954. Measurement of algal growth under controlled steady state conditions. Plant Physiol., Vol. 29, pp. 148–52.CrossRefGoogle ScholarPubMed