Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T05:41:10.308Z Has data issue: false hasContentIssue false

Variation in Genome Size in Benthic Polychaetes: Systematic and Ecological Relationships

Published online by Cambridge University Press:  11 May 2009

M.C. Gambi
Affiliation:
Laboratorio di Ecologia del Benthos, Stazione Zoologica ‘Anton Dohrn’, 80077 Ischia (Napoli), Italy.
L. Ramella
Affiliation:
Dipartimento di Biologia Animale, Università di Torino, via Accademia Albertina 17, 10123 Torino, Italy
G. Sella
Affiliation:
Dipartimento di Biologia Animale, Università di Torino, via Accademia Albertina 17, 10123 Torino, Italy
P. Protto
Affiliation:
Dipartimento di Biologia Animale, Università di Torino, via Accademia Albertina 17, 10123 Torino, Italy
E. Aldieri
Affiliation:
Dipartimento di Biologia Animale, Università di Torino, via Accademia Albertina 17, 10123 Torino, Italy

Extract

Genome size (or C-value) in benthic polychaetes was studied from both experimental data and literature. Nuclear DNA content variation was analysed as related to both phylogenetic relationships of various families, general life habit of the species (interstitial vs macrobenthic), diploid chromosome number (2n), and mean body size (length). Experimental data on genome size were obtained for 43 lower taxa (genera and species) by means of microdensitometric analysis of the amount of Fuelgen-stained haploid DNA in interphase nuclei. These data, added to those available in the literature (36 taxa studied by Conner et al., 1972) gave a total of 79 taxa (genera and species), representing 30 families and 14 orders. Twenty-one of the species studied belonged exclusively to interstitial (=meiofaunal) families or genera.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åkesson, B., 1975. Reproduction in the genus Ophryotrocha (Polychaeta, Dorvilleidae). Pubblicazioni della Stazione Zoologica di Napoli I, 39, supplement 1, 377398.Google Scholar
Bachmann, K., Harrington, B.A. & Craig, J.P., 1972. Genome size in Birds. Chromosoma, 37, 405416.Google Scholar
Balsamo, M. & Manicardi, G.C., 1995. Nuclear DNA content in Gastrotricha. Experientia, 51, 356359.CrossRefGoogle Scholar
Cavalier-Smith, T., 1985. The evolution of genome size. Chichester: John Wiley & Sons.Google Scholar
Christensen, B., 1980. Annelida. In Animal cytogentics (ed. B., John et al.), pp. 181. Berlin: Gebriider Borntraeger.Google Scholar
Clark, R.B., 1969. Systematics and phylogeny, Annelida, Echiura, Sipuncula. In Chemical zoology, vol. 4 (ed. M., Florkin and B.T., Scheer), pp. 168. New York: Academic Press.Google Scholar
Conner, W.G., Hinegardner, R. & Bachmann, K., 1972. Nuclear DNA amounts in polychaetous annelids. Experientia, 28, 15021504.CrossRefGoogle Scholar
Curini-Galletti, M., Lardicci, C. & Regoli, F., 1991. A contribution to the karyology of Syllidae (Polychaeta). In Systematics, biology and morphology of world Polychaeta. Proceedings of the 2nd International Polychaete Conference, Copenhagen, 18–23 August 1986 (ed. M.E., Petersen and J.B., Kirkegaard), pp. 723. Stenløse, Denmark: Leif Lyneborg Fauna Books. [Ophelia, supplement 5, 599–606.]Google Scholar
Dales, P.R., 1963. Annelids. London: Hutchinson University Library.Google Scholar
Dales, P.R., 1977. The polychaete stomodeum and phylogeny. In Essays in polychaetous annelids, in memory of Dr Olga Hartman (ed. D.J., Reish and K., Fauchald), pp. 525546. Los Angeles: Allan Hancock Foundation, University of Southern California.Google Scholar
Eibye-Jacobsen, D. & Kristensen, R.M., 1994. A new genus and species of Dorvilleidae (Annelida, Polychaeta) from Bemuda, with a phylogentic analysis of Dorvilleidae, Iphitimidae and Dinophilidae. Zoologica Scripta, 23, 107131.CrossRefGoogle Scholar
Fauchald, K., 1984. Polychaete distribution patterns, or: can animals with Palaeozoic cousins show large-scale geographic patterns? In Proceedings of the 1st International Polychaete Conference, Sydney, Australia, July 1983 (ed. P.A., Hutchings), pp. 16. Sydney: Linnean Society of New South Wales.Google Scholar
Giangrande, A., Geraci, S. & Belmonte, G., 1994. Life-cycle and life-history diversity in marine invertebrates and implications in community dynamics. Oceanography and Marine Biology. Annual Review, 32, 305333.Google Scholar
Grassle, J.P., Gelfman, C.E. & Mills, S.W., 1987. Karyotypes of Capitella sibling species, and of several species in the related genera Capitellides and Capitomastus (Polychaeta). Bulletin of the Biological Society of Washington, 7, 7788.Google Scholar
Grime, J.P. & Mowforth, M.A., 1992. Variation in genome size – an ecological interpretation. Nature, London, 299, 151153.CrossRefGoogle Scholar
Hinegardner, R., 1976. Evolution of genome size. In Molecular evolution (ed. F., Ayala), pp. 179199. Sunderland, Massachussets: Sinauer Association Inc.Google Scholar
Hughes, A.L. & Hughes, M.K., 1995. Small genomes for better flies. Nature, London, 377, 391.CrossRefGoogle Scholar
Itikawa, O. & Ogura, J., 1954. The Feulgen reaction after hydrolysis at room temperature. Stain Technology, 29, 1315.CrossRefGoogle ScholarPubMed
Jasienski, M. & Bazzaz, F.A., 1995. Genome size and high CO2. Nature, London, 376, 559560.CrossRefGoogle Scholar
Jha, A.N., Hutchinson, T.H., Mackay, J.M., Elliot, B.M., Pascoe, P.L. & Dixon, D.R., 1995. The chromosomes of Platynereis dumerilii (Polychaeta: Nereidae). Journal of the Marine Biological Association of the United Kingdom, 75, 551562.CrossRefGoogle Scholar
John, B. & Miklos, G.L.G., 1987. The eukaryote genome in development and evolution. London: Allen & Unwin.Google Scholar
Levin, D.A., 1975. Pest pressure and recombination systems in plants. American Nauralist, 109, 437451.CrossRefGoogle Scholar
Manfredi, Romanini M.G., 1985. Nuclear content of deoxiribonucleic acid and some problems of mammalian phylogenesis. Mammalia, 49, 369385.Google Scholar
Martens, P.M., Curini-Galletti, M.C. & Oostveldt, P. Van, 1989. Polyploidy in Proseriata (Platyhelminthes) and its phylogenetical implications. Evolution, 43, 900907.Google ScholarPubMed
Martin, F. & Traut, W., 1987. The mode of sex determination in Dinophilus gyrociliatus (Archiannelida). International Journal of Invertebrate Reproduction and Development, 11, 159—172.CrossRefGoogle Scholar
Mclntyre, A.D. & Warwick, R.M., 1984. Meiofauna techniques. In Methods for the study of marine benthos (ed. N.A., Holme and A.D., Mclntyre), pp. 217244. London: Blackwell Scientific Publications.Google Scholar
McKinney, M.L. & McNamara, K.J., 1991. Heterochrony. The evolution of ontogeny. New York: Plenum Press.CrossRefGoogle Scholar
Mileikovsky, S.A., 1977. On the systematic interrelationships within the Polychaeta and Annelida – an attempt to create an integrated system based on their larval morphology. In Essays in polychaetous annelids, in memory of Dr Olga Hartman (ed. D.J., Reish and K., Fauchald), pp. 503524. Los Angeles: Allan Hancock Foundation, University of Southern California.Google Scholar
Pesch, G.G., Pesch, C.E. & Müller, C., 1988. Chromosome complements from two populations of the marine worm Neanthes arenaceodentata (Annelida: Polychaeta). Ophelia, 28, 163167.CrossRefGoogle Scholar
Pettibone, M., 1982. Annelida. In Synopsis and classification of living organisms (ed. S.P., Parker), pp. 143. London: McGraw Hill Book Company.Google Scholar
Pleijel, F. & Eide, R., 1996. The phylogeny of Ophryotrocha (Dorvilleidae: Eunicida: Polychaeta). journal of Natural History, 30, 647659.CrossRefGoogle Scholar
Purschke, G. & Jouin-Toulmond, C., 1988. Anatomy and infrastructure of the ventral pharyngeal organs of Saccocirrus (Saccocirridae) and Protodriloides (Protodriloidae fam. n.) with remarks on the phylogenetic relationships within the Protodrilida (Annelida: Polychaeta). Journal of Zoology, 215, 405432.CrossRefGoogle Scholar
Purschke, G. & Jouin-Toulmond, C., 1994. Ultrastructure of sense organs and the central nervous system in Parenterodrilus taenioides and their phylogenetic significance in the taxon Protodrilida (Annelida, Polychaeta). In Actes de la 4éme Conference Internationale des Polychètes, Angers, France, 27 Juillet-l Aout 1992 (ed. J.-C., Dauvin et al.), pp. 119128. Paris: Editions du Muséum National d'Histoire Naturelle.Google Scholar
Rasch, E.M., Barr, H.S. & Rasch, W., 1971. The DNA content of sperm of Drosophila melanogaster. Chromosoma, 33, 118.CrossRefGoogle ScholarPubMed
Redi, C.A. & Garagna, S., 1987. Cytochemical evaluation of the nuclear DNA content as a tool for taxonomical studies in eutardigrades. In Biology of tardigrades, selected symposia and monographs UZI (ed. R., Bertolani), pp. 7380. Modena, Italy: Mucchi.Google Scholar
Rouse, G.W. & Fauchald, K., 1995. The articulation of annelids. Zoologica Scripta, 24, 269301.CrossRefGoogle Scholar
San, Martin G., 1984. Estudio biogeografico, faunistico y sistematico de los poliquetos de lafamilia Silidos (Syllidae: Polychaeta) en Baleares. PhD thesis no. 187/84, Universidad Complutense de Madrid.Google Scholar
Sato, M. & Ikeda, M., 1992. Chromosomal complements of two forms of Neanthes japonica (Polychaeta, Nereididae) with evidence of male-heterogametic sex chromosomes. Marine Biology, 112, 299307.CrossRefGoogle Scholar
Sella, G., Redi, C.A., Ramella, L., Soldi, R. & Premoli, M.C., 1993. Genome size and karyotype length in interstitial polychaete species of the genus Ophryotrocha (Dorvilleidae). Genome, 36, 652657.CrossRefGoogle ScholarPubMed
Soldi, R., Ramella, L., Gambi, M.C., Sordino, P. & Sella, G., 1994. Genome size in polychaetes: relationships with body length and life habit. In Actes de la 4éme Conference Internationale des Polychètes, Angers, France, 27 Juillet – 1 Aout 1992 (ed. J.-C., Dauvin et al.), pp. 129135. Paris: Editions du Muséum National d'Histoire Naturelle.Google Scholar
Sparrow, A.H., Price, H.J. & Underbrink, A.G., 1972. A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. In Evolution of genetic systems (ed. H.H., Smith), pp. 451494. New York: Gordon & Breach. [Brookhaven Symposia in Biology, no. 23.]Google Scholar
Sulston, J.E. & Brenner, S., 1974. The DNA of Caenorhabditis elegans. Genetics, 77, 95104.CrossRefGoogle ScholarPubMed
Svedmark, B., 1964. The interstitial fauna of marine sand. Biological Reviews, 39, 142.CrossRefGoogle Scholar
Thiriot-Quiévreux, C. & Ayraud, N., 1982. Les caryotypes de quelques espèces de bivalves et de gastéropodes marins. Marine Biology, 70, 165172.CrossRefGoogle Scholar
Tiersch, T.R. & Wachtel, S.S., 1991. On the evolution of genome size of Birds. Journal of Heredity, 82, 363368.CrossRefGoogle ScholarPubMed
Westheide, W., 1984. The concept of reproduction in polychaetes with small body size: adaptations in interstitial species. In Polychaete reproduction: progress in comparative reproductive biology (ed. A., Fisher and H.D., Pfannenstiel), pp. 265288. Stuttgart: Gustav Fisher Verlag.Google Scholar
Westheide, W., 1985. The systematic position of the Dinophilidae and the archiannelid problem. In The origins and relationships of lower invertebrates (ed. S.C., Morris et al.), pp. 310326. Oxford: Clarendon Press. [Systematic Association, special volume no. 28.]Google Scholar
Westheide, W., 1990. Polychaetes: interstitial families. Synopses of the British Fauna, New Series, Linnean Society. London, 44, 1153.Google Scholar
Wilson, H.W. Jr, 1991. Sexual reproductive modes in polychaetes: classification and diversity. Bulletin of Marine Science, 48, 500516.Google Scholar
Woodin, S.A., 1987. External morphology of the polychaeta: design constraints by life habit? Bulletin of the Biological Society of Washington, 7, 295309.Google Scholar