Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T02:13:23.023Z Has data issue: false hasContentIssue false

Using morphological and molecular tools to identify megalopae larvae collected in the field: the case of sympatric Cancer crabs

Published online by Cambridge University Press:  20 January 2009

Luis Miguel Pardo*
Affiliation:
Laboratorio Costero Calfuco, Instituto de Biologia Marina, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
David Ampuero
Affiliation:
Instituto de Oceanología, Facultad de Ciencias del Mar, Universidad de Valparaíso, Casilla 13-D, Viña del Mar, Chile
David Véliz
Affiliation:
Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile. Casilla 653, Ñuñoa, Santiago, Chile
*
Correspondence should be addressed to: L.M. Pardo, Laboratorio Costero Calfuco, Instituto de Biologia Marina, Universidad Austral de Chile, Casilla 567, Valdivia, Chile email: [email protected]

Abstract

Studies of recruitment dynamics in meroplanktonic organisms are dependent on the correct identification of each ontogenic stage of each species. This is particularly difficult when studying the larval stages, which are not easy to identify due to their lack of resemblance to conspecific adults and their high degree of similarity with congenerics at the same stage of development. This is the case with the crustacean megalopae of the genus Cancer along the coast of the south-eastern Pacific. This fact represents a serious limitation on ecological studies of populations of these species which constitute a heavily exploited local resource. In this study we describe in detail field collected megalopae larvae of three sympatric crab species of the genus Cancer(C. edwardsii, C. setosus and C. coronatus). As a result of this analysis we were able to identify easily visible diagnostic characters which allow the species to be distinguished from one another. The megalopae were easily distinguished by the form of the cheliped and the presence of spines on these. Cancer edwardsii has an elongated globulose cheliped, whereas C. coronatus has a subquadrate one. Both species possess a prominent ischial spine, which is absent in C. setosus. We corroborated the utility of these diagnostic characters by comparing the COI gene sequences of mitochondrial DNA of larvae identified by morphology with sequences taken from samples of the adults of all species of Cancer found in the region. We discuss the morphological variations between larvae found across the region (i.e. at sites separated by more than 800 km) and between megalopae obtained from the field versus those cultivated in the laboratory. We conclude that the simultaneous use of morphological and molecular tools for identification of decapod larvae appears useful for the study of cryptic species.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aljanabi, S.M. and Martinez, I. (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acid Research 25, 4692–2693.CrossRefGoogle ScholarPubMed
Anger, K. (2001) The biology of decapod crustacean larvae. In Vonk, R. (ed.) Crustacean issues. Lisse, The Netherlands: A.A. Balkema Publishers, pp. 1419.Google Scholar
Ampuero, D. (2007) Descripción de la larva megalopae de cinco especies de braquiuros Chilenos colectados en ambiente natural. Thesis to Marine Biologist. Universidad de Valparaiso, Valparaiso, Chile.Google Scholar
Barber, P. and Boyce, S. (2006) Estimating diversity of Indo-Pacific coral reef stomatopods through DNA barcoding of stomatopod larvae. Proceedings of the Royal Society B: Biological Sciences 273, 20532061.CrossRefGoogle ScholarPubMed
Burton, R.S. (1996) Molecular tools in marine ecology. Journal of Experimental Marine Biology and Ecology 200, 85101.CrossRefGoogle Scholar
Clark, P.F., De Calazans, D. and Pohle, G. (1998) Accuracy and standardization of brachyuran larval description. Invertebrate Reproduction and Development 33, 127144.CrossRefGoogle Scholar
Cuesta, J.A., Luppi, T.A., Rodriguez, A. and Spivak, E.D. (2002) Morphology of the megalopal stage of Chasmagnathus granulatus Dana, 1851 (Crustacea: Decapoda: Brachyura: Varunidae), with comments on morphological anomalies. Proceedings of the Biological Society of Washington 115, 391402.Google Scholar
DeBrosse, G., Sulkin, S. and Jamieson, G. (1990) Intraspecific morphological variability in megalopae of three sympatric species of the genus Cancer (Brachyura: Cancridae). Journal of Crustacean Biology 10, 315329.CrossRefGoogle Scholar
Eaton, D.R., Brown, J., Addison, J.T., Milligan, S.P. and Fernand, L.J. (2003) Edible crab (Cancer pagurus) larvae surveys off the east coast of England: implications for stock structure. Fisheries Research 65, 191199.CrossRefGoogle Scholar
Feldmann, R.M. (2003) The Decapoda: new initiatives and novel approaches. Journal of Paleontology 77, 10211039.2.0.CO;2>CrossRefGoogle Scholar
Filatov, D.A. (2002) ProSeq: a software for preparation and evolutionary analysis of DNA sequence data sets. Molecular Ecology Notes 2, 621624.CrossRefGoogle Scholar
Flegel, T.W. (2008) Confirmation of the right to refuse revision in the genus Penaeus. Aquaculture 280, 14.CrossRefGoogle Scholar
Folmer, S.C., Black, M., Hoek, R., Lutz, R.A. and Vrijenhoek, R. (1994) DNA primers for amplification for mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google Scholar
France, S.C. and Hoover, I.L. (2002) DNA sequences of the mitochondrial COI gene have low level of divergence among deep-sea octocorals (Cnidaria: Anthozoa). Hydrobiologia 417, 149155.CrossRefGoogle Scholar
Garth, J.S. (1957) The Crustacea Decapoda Brachyura of Chile. Reports of the Lund University Expedition 1948–49. Lund Universitets Årsskrift, (New Series, 2) 53, 1131.Google Scholar
Gosselin, L.A. and Qian, P.E. (1997) Juvenile mortality in benthic marine invertebrates. Marine Ecology Progress Series 146, 265282.CrossRefGoogle Scholar
Harrison, M.K. and Crespi, B.J. (1999) Phylogenetics of Cancer crabs (Crustacea: Decapoda: Brachyura). Molecular Phylogenetics and Evolution 12, 186199.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Cywindka, A., Ball, S.L. and deWaard, J.R. (2003a) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B 270, 313321.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Ratnasingham, S. and deWaard, J.R. (2003b) Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species. Proceedings of the Royal Society of London B 270, 9699.CrossRefGoogle ScholarPubMed
Hunt, H.L. and Scheilbling, R.E. (1997) Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Marine Ecology Progress Series 155, 269301.CrossRefGoogle Scholar
Iwata, F. and Konishi, K. (1981) Larval development in laboratory of Cancer amphioetus Rathbun, in comparison with those of seven other species of Cancer (Decapoda, Brachyura). Publications of the Seto Marine Biological Laboratory 26, 369391.CrossRefGoogle Scholar
Jesse, S. and Stotz, W. (2003) Spatio-temporal distribution patterns of crab assemblage in the shallow subtidal of the north Chilean Pacific coast. Crustaceana 75, 11611200.CrossRefGoogle Scholar
Knowlton, N. and Weigt, L.A. (1998) New dates and new rates for divergences across the Isthmus of Panama. Proceedings of the Royal Society of London B 265, 22572263.CrossRefGoogle Scholar
McHugh, D. and Rouse, G.W. (1998) Life history evolution of marine invertebrates: new views from phylogenetic systematics. Trends in Ecology and Evolution 13, 182186.CrossRefGoogle ScholarPubMed
Meier, R., Shiyang, K., Vaidya, G. and Ng, P.K.L. (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and a low identification success. Systematic Biology 55, 715728.CrossRefGoogle Scholar
Muñoz, C.A., Pardo, L.M., Henríquez, L.A. and Palma, A.T. (2006) Variaciones temporales en la composición y abundancia de cuatro especies de Cancer (Decapoda: Brachyura: Cancridae) capturadas con trampas en bahía San Vicente, Concepción (Chile central). Investigaciones Marinas 34, 921.CrossRefGoogle Scholar
Nations, J.D. (1975) The genus Cancer (Crustacea: Brachyura): systematics, biogeography and fossil record. Natural History Museum of Los Angeles County. Science Bulletin 23, 1104.Google Scholar
Negreiros-Fransozo, M.L., Wenner, E.L., Knott, D.M. and Fransozo, A. (2007) The megalopa and early juvenile stages of Calappa tortugae Rathbun, 1933 (Crustacea, Brachyura) reared in the laboratory from South Carolina neuston samples. Proceedings of the Biological Society of Washington 120, 469485.CrossRefGoogle Scholar
Neigel, J., Domingo, A. and Stake, J. (2007) DNA barcoding as a tool for coral reef conservation. Coral Reefs 26, 487499.CrossRefGoogle Scholar
Ng, P.K.L., Guinot, D. and Davie, P.J.F. (2008) An annotated checklist of extant brachyuran crabs of the world. The Raffles Bulletin of Zoology 17, 1286.Google Scholar
Orensanz, J.M. and Gallucci, V.F. (1988) Comparative study of postlarval life-history schedules in four sympatric species of Cancer (Decapoda: Brachyura: Cancridae). Journal of Crustacean Biology 8, 187220.CrossRefGoogle Scholar
Palma, A.T., Pardo, L.M., Veas, R., Cartes, C., Silva, M., Manríquez, K., Díaz, A., Muñoz, C. and Ojeda, F.P. (2006) Coastal brachyuran decapods: settlement and recruitment under contrasting coastal geometry conditions. Marine Ecology Progress Series 316, 139153.CrossRefGoogle Scholar
Palmer, M.A., Allan, D. and Butman, C.A. (1996) Dispersal as a regional process affecting the local dynamics of marine and stream benthic invertebrates. Trends in Ecology and Evolution 11, 322326.CrossRefGoogle ScholarPubMed
Pardo, L.M., Palma, A.T., Prieto, C., Sepúlveda, P., Valdivia, I. and Ojeda, F.P. (2007) Processes regulating early post-settlement habitat use in a subtidal assemblage of brachyuran decapods. Journal of Experimental Marine Biology and Ecology 344, 1022.CrossRefGoogle Scholar
Poole, R.L. (1966) A description of the laboratory-reared zoea of Cancer magister Dana, and megalopae taken under natural conditions (Decapoda, Brachyura). Crustaceana 11, 8397.CrossRefGoogle Scholar
Quintana, R. (1983) Larval development of the edible crab, Cancer edwardsii Bell, 1835 under laboratory conditions (Decapoda, Brachyura). Reports of the USA Marine Biological Institute, Kochi University 5, 119.Google Scholar
Quintana, R. and Saelzer, H. (1986) The complete larval development of the edible crab, Cancer setosus Molina and observations on the prezoeal and first zoeal stages of C. coronatus Molina (Decapoda: Brachyura, Cancridae). Journal of the Faculty of Science, Hokkaido University. Series 6, Zoology 24, 267303.Google Scholar
Rao, S., Liston, A., Crampton, L. and Takeyasu, J. (2006) Identification of larvae of exotic Tipula paludosa (Diptera: Tipulidae) and T. oleracea in North America using mitocondrial cytB sequences. Annals of the Entomological Society of America 99, 3340.CrossRefGoogle Scholar
Roughgarden, J., Gaines, S. and Possingham, H. (1988) Recruitment dynamics in complex life cycles. Science 241, 14601466.CrossRefGoogle ScholarPubMed
Schweitzer, C.E. and Feldmann, R.M. (2000) Re-evaluation of the Cancridae Latreille, 1802 (Decapoda: Brachyura) including three new genera and three new species. Contributions to Zoology 69, 223250.CrossRefGoogle Scholar
SERNAPESCA (2006) Anuario Estadísticos de Pesca. Servicio Nacional de Pesca, Ministerio de Economía, Fomento y Reconstrucción, Chile, 326 pp.Google Scholar
Shearer, T.L., Van Oppen, M.J.H., Romano, S.L. and Worheide, G. (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Molecular Ecology 11, 24752487.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Trask, T. (1970) A description of laboratory-reared larvae of Cancer productus Randall (Decapoda, Brachyura) and a comparison to larvae of Cancer magister Dana. Crustaceana 18, 133146.CrossRefGoogle Scholar
Vences, M., Thomas, M., Bonett, R.M. and Vieites, D.R. (2005) Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philosophical Transactions of the Royal Society B 360, 18591868.CrossRefGoogle ScholarPubMed
Wahle, R.A. (2003) Revealing stock–recruitment relationships in lobsters and crabs: is experimental ecology the key? Fisheries Research 65, 332.CrossRefGoogle Scholar
Webb, K.E., Barnes, D.K.A., Clark, M.S. and Bowden, D.A. (2006) DNA barcoding: a molecular tool to identify Antarctic marine larvae. Deep-Sea Research Part II—Topical Studies in Oceanography 53, 10531060.CrossRefGoogle Scholar
Williamson, D.I. (1982) Larval morphology and diversity. In Abele, L.G. (ed.) The biology of Crustacea, Volume 2. Embryology, morphology and genetics. New York: Academic Press, pp. 43110.Google Scholar